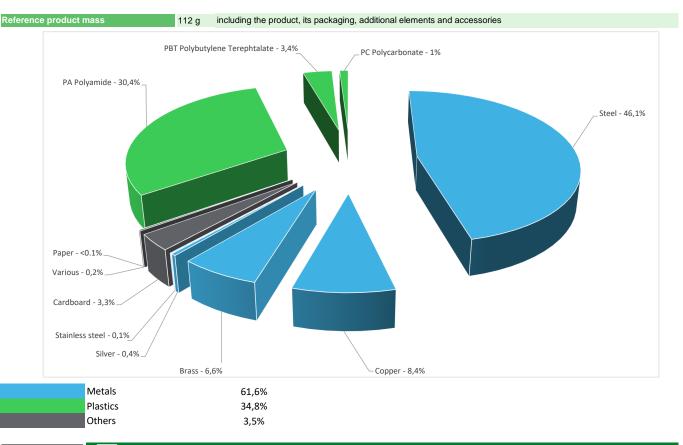
Product Environmental Profile

Modular contactor, TeSys GC, AC-7a, 25A, 2NO, 12VAC coil

Representative of all TeSys GC contactor, from 1 to 4 poles, from 16A to 100A



General information

Reference product	Modular contactor, TeSys GC, AC-7a, 25A, 2NO, 12VAC coil - GC2520J5
Description of the product	TeSys GC modular contactor, 2 poles (2NO), 25A/250V AC-7a (heating) and 8.5A/250V AC-7b (motor control), for household applications. Control voltage 12V AC 50Hz, state indicator on front. For use in modular panels, compact (18mm width), clipping on 35mm DIN rail, connection by screw terminals. Sold in lots of 12 units. Multi standards certified (IEC, EN, NF-USE, VDE, CEBEC, OVE).
Description of the range	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. The products of the range are: All TeSys GC contactor, from 1 to 4 poles, from 16A to 100A
Functional unit	Establish and cut off the supply of a downstream installation from an electrical and/or mechanical control characterised by the composition of the poles or type of contacts 2NO (X), a rated voltage of 250V (Ue), a rated current 25A (Ie), a control circuit voltage 12V (Uc), with 2 poles, and if applicable the specific specifications, in the Household/Commercial or Industrial application areas, while protecting them against the penetration of solid objects and liquids (IP20) in accordance with the standard IEC 62262 according to the appropriate use scenario, and during the reference service life of the product of 20 years
Specifications are:	X = 2NO Ue = 250V Ie = 255A Np = 2 poles Uc = 12V Category of use: AC-7A / AC-7B IP: IP20 Voltage range: Low Voltage Current type: Alternative Current

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website $\underline{\text{https://www.se.com}}$

Additional environmental information

End Of Life

Recyclability potential:

62%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Environmental impacts

Reference service life time	20 years										
Product category	Contactors - Industrial										
Life cycle of the product	The manufacturing, the distribution, the installatio	The manufacturing, the distribution, the installation, the use and the end of life were taken into consideration in this study									
Electricity consumtion	The electricity consumed during manufacturing progenerates a negligable consumption	The electricity consumed during manufacturing processes is considered for each part of the product individually, the final assembly generates a negligable consumption									
Installation elements	No special components needed										
Use scenario	Load rate = 50 % le Use rate = 50 % RLT										
Time representativeness	The collected data are representative of the year 2024										
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.										
Geographical	Final assembly site Use phase End-of-life										
representativeness	Chasseneuil, France	Eur	ope	Europe							
	[A1 - A3]	[A5]	[B6]	[C1 - C4]							
Energy model used	Electricity Mix; Low voltage; 2020; France, FR	No energy used	Electricity Mix; Low voltage; 2020; Europe, EU-27	Global, European and French datasets are used.							

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators			Modular con	tactor, TeSys G	C, AC-7a, 25A, 2	NO, 12VAC coil -	GC2520J5	
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to climate change	kg CO2 eq	4,07E+01	6,56E-01	2,18E-02	0*	3,98E+01	2,01E-01	-2,27E-01
Contribution to climate change-fossil	kg CO2 eq	3,98E+01	6,56E-01	2,18E-02	0*	3,90E+01	2,01E-01	-2,27E-01
Contribution to climate change-biogenic	kg CO2 eq	8,81E-01	5,90E-04	0*	1,85E-04	8,80E-01	3,61E-04	-5,45E-06
Contribution to climate change-land use and land use change	e kg CO2 eq	1,62E-06	1,58E-06	0*	0*	0*	3,42E-08	0,00E+00
Contribution to ozone depletion	kg CFC-11 eq	1,98E-07	2,39E-08	3,34E-11	5,05E-11	1,71E-07	3,60E-09	-3,93E-08
Contribution to acidification	mol H+ eq	2,12E-01	3,22E-03	1,38E-04	0*	2,09E-01	6,12E-04	-1,42E-03
Contribution to eutrophication, freshwater	kg P eq	1,13E-04	1,68E-05	0*	8,93E-08	9,54E-05	2,84E-07	-4,06E-07
Contribution to eutrophication marine	kg N eq	2,51E-02	4,83E-04	6,47E-05	4,96E-06	2,44E-02	1,24E-04	-1,32E-04
Contribution to eutrophication, terrestrial	mol N eq	3,98E-01	4,91E-03	7,10E-04	0*	3,91E-01	1,42E-03	-1,53E-03
Contribution to photochemical ozone formation - human health	kg COVNM eq	7,95E-02	1,59E-03	1,79E-04	0*	7,74E-02	3,82E-04	-5,45E-04
Contribution to resource use, minerals and metals	kg Sb eq	4,10E-04	3,98E-04	0*	0*	1,29E-05	0*	-6,76E-05
Contribution to resource use, fossils	MJ	9,76E+02	1,84E+01	3,04E-01	0*	9,55E+02	1,62E+00	-5,01E+00
Contribution to water use	m3 eq	3,23E+00	1,87E-01	0*	0*	3,02E+00	2,37E-02	-1,03E-01

Inventory flows Indicators		Modular con	tactor, TeSys G	C, AC-7a, 25A, 2	NO, 12VAC coil -	GC2520J5		
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	2,24E+02	2,60E-01	0*	0*	2,24E+02	8,43E-02	-3,97E-02
Contribution to use of renewable primary energy resources used as raw material	MJ	1,16E-01	1,16E-01	0*	0*	0*	0*	-7,89E-03
Contribution to total use of renewable primary energy resources	MJ	2,24E+02	3,76E-01	0*	0*	2,24E+02	8,43E-02	-4,75E-02
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	9,75E+02	1,75E+01	3,04E-01	0*	9,55E+02	1,62E+00	-5,01E+00
Contribution to use of non renewable primary energy resources used as raw material	MJ	9,65E-01	9,65E-01	0*	0*	0*	0*	0,00E+00
Contribution to total use of non-renewable primary energy resources	MJ	9,76E+02	1,84E+01	3,04E-01	0*	9,55E+02	1,62E+00	-5,01E+00
Contribution to use of secondary material	kg	2,89E-03	2,89E-03	0*	0*	0*	0*	0,00E+00
Contribution to use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to net use of freshwater	m³	7,56E-02	4,36E-03	0*	0*	7,06E-02	6,61E-04	-2,39E-03
Contribution to hazardous waste disposed	kg	2,85E+00	1,75E+00	0*	0*	1,10E+00	9,65E-04	-5,30E+00
Contribution to non hazardous waste disposed	kg	6,49E+00	3,63E-01	7,65E-04	1,67E-03	6,00E+00	1,22E-01	-1,71E-01
Contribution to radioactive waste disposed	kg	1,57E-03	1,45E-04	5,45E-07	2,06E-07	1,42E-03	5,49E-06	-7,75E-05
Contribution to components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to materials for recycling	kg	1,32E-01	6,42E-02	0*	0*	0*	6,74E-02	0,00E+00
Contribution to materials for energy recovery	kg	0,00E+00	0*	0*	0*	0*	0*	0,00E+00
Contribution to exported energy	MJ	8,49E-04	2,27E-05	0*	1,59E-04	0*	6,67E-04	0,00E+00

^{*} represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0,00E+00 Contribution to biogenic carbon content of the associated packaging kg of C 1,02E-03

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators			Modu	ılar contactor	, TeSys G	C, AC-7a	ı, 25A, 21	NO, 12VAC coil	- GC2520J5
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	3,98E+01	0*	0*	0*	0*	0*	3,98E+01	0*
Contribution to climate change-fossil	kg CO2 eq	3,90E+01	0*	0*	0*	0*	0*	3,90E+01	0*
Contribution to climate change-biogenic	kg CO2 eq	8,80E-01	0*	0*	0*	0*	0*	8,80E-01	0*
Contribution to climate change-land use and land use change-	ge kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	1,71E-07	0*	0*	0*	0*	0*	1,71E-07	0*
Contribution to acidification	mol H+ eq	2,09E-01	0*	0*	0*	0*	0*	2,09E-01	0*
Contribution to eutrophication, freshwater	kg P eq	9,54E-05	0*	0*	0*	0*	0*	9,54E-05	0*
Contribution to eutrophication marine	kg N eq	2,44E-02	0*	0*	0*	0*	0*	2,44E-02	0*
Contribution to eutrophication, terrestrial	mol N eq	3,91E-01	0*	0*	0*	0*	0*	3,91E-01	0*
Contribution to photochemical ozone formation - human health	kg COVNM eq	7,74E-02	0*	0*	0*	0*	0*	7,74E-02	0*
Contribution to resource use, minerals and metals	kg Sb eq	1,29E-05	0*	0*	0*	0*	0*	1,29E-05	0*
Contribution to resource use, fossils	MJ	9,55E+02	0*	0*	0*	0*	0*	9,55E+02	0*
Contribution to water use	m3 eq	3,02E+00	0*	0*	0*	0*	0*	3,02E+00	0*

Inventory flows Indicators			Mod	ular contactor,	TeSys G	C, AC-7a	, 25A, 2l	NO, 12VAC coil	- GC2520J5
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	2,24E+02	0*	0*	0*	0*	0*	2,24E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	2,24E+02	0*	0*	0*	0*	0*	2,24E+02	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	9,55E+02	0*	0*	0*	0*	0*	9,55E+02	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	9,55E+02	0*	0*	0*	0*	0*	9,55E+02	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	7,06E-02	0*	0*	0*	0*	0*	7,06E-02	0*
Contribution to hazardous waste disposed	kg	1,10E+00	0*	0*	0*	0*	0*	1,10E+00	0*
Contribution to non hazardous waste disposed	kg	6,00E+00	0*	0*	0*	0*	0*	6,00E+00	0*
Contribution to radioactive waste disposed	kg	1,42E-03	0*	0*	0*	0*	0*	1,42E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

 $^{^{\}star}$ represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	SCHN-01405-V01.01-EN	Drafting rules	PEP-PCR-ed4-2021 09 06					
		Supplemented by	PSR-0005-ed3-2023 06 06					
Verifier accreditation N°	VH45	Information and reference documents	www.pep-ecopassport.org					
Date of issue	01/05/2025	Validity period	5 years					
Independent verification of the declaration and data, in compliance with ISO 14025 : 2006								
Internal External X								
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)								
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022								
The components of the present PEP may not be compared with components from any other program.								
Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"								

Schneider Electric Industries SAS

Country Customer Care Center http://www.se.com/contact

Head Office

35, rue Joseph Monier

CS 30323

F- 92500 Rueil Malmaison Cedex

RCS Nanterre 954 503 439

Capital social 928 298 512 €

www.se.com

SCHN-01405-V01.01-EN

Published by Schneider Electric

©2024 - Schneider Electric – All rights reserved

01/05/2025