Datenblatt

Aquastrom TV

Thermische Zirkulationsventile

Für den hydraulischen Abgleich in Zirkulationsleitungen gemäß DVGW-Arbeitsblatt W551/W553. Die Aquastrom TV Zirkulationsventile sind thermisch geregelt und mit Innenoder Außengewinde verfügbar. Unterhalb der eingestellten Temperatur öffnet das Ventil und erhöht den Warmwasservolumenstrom selbsttätig. Das Ventil verfügt über einen festen Restvolumenstrom, erkennt eine thermische Desinfektion automatisch und ermöglicht die Begrenzung und Absperrung des maximalen Volumenstroms über eine integrierte Reguliereinheit mit reproduzierbarer Voreinstellung.

Die Ventile sind aus bleifreiem Messing. Sie sind je nach Ausführung mit einem Entleerungsventil mit Schlauchaufnahme und einem Thermometer ausgerüstet. Ein Temperatursensor zur Einbindung in die Gebäudeleittechnik kann nachgerüstet werden. Ebenfalls abhängig von der Ausführung ist eine Dämmschale aus EPP nach GEG und Baustoffklasse B2 nach DIN 4102 ist im Lieferumfang enthalten oder optional verfügbar.

Die Aquastrom TV Ventile regeln den hydraulischen Abgleich und die temperaturgeführte Regulierung der Volumenströme in Trinkwasserzirkulationsleitungen. Der Temperatursollwert kann blockiert und plombiert werden. Der Durchfluss lässt sich blockieren.

Merkmale

- + Automatische thermische Volumenstromregelung
- + Automatische Unterstützung einer thermischen Desin-
- + Begrenzung des maximalen Volumenstroms
- + Temperatursollwert blockier- und plombierbar
- + Durchfluss blockierbar
- + Einbindung in Gebäudeleittechnik mit optionalem Fühlerelement möglich

Technische Daten

Nennweiten	DN 1520		
Varianten	mit Innengewinde gemäß EN 10226 mit Außengewinde gemäß EN ISO 228		
Betriebstemperatur	090 °C		
Max. Betriebsdruck	16 bar		
Medium	Trinkwasser gem. DVGW W551 und W553		
Material Gehäuse	Bleifreies Messing		
Material O-Ringe	EPDM		
Material Dämmschale	EPP gem. GEG, Baustoffklasse B2 nach DIN 4102		
Kvs-Werte	DN 15: 1,15 DN 20: 1,93		

Produktangaben

Funktionen

Die unmittelbare Bereitstellung von Warmwasser an den Zapfstellen eines Trinkwasserleitungsnetzes erfolgt durch die Verteilung des Warmwassers aus dem Trinkwassererwärmer in einen oder mehrere Zirkulationsstränge. Jeder Zirkulationsstrang führt hierbei in einer am Hauptstrang angeschlossenen Vorlaufleitung das Warmwasser bis an die Zapfstellen und in einer Rücklaufleitung wieder zurück zum Trinkwassererwärmer.

Die Auslegung solcher Trinkwasserleitungsnetze liegt in der Verantwortlichkeit des Planers, der die Hydraulik in diesen Leitungsnetzen beachten muss, damit in allen Zirkulationssträngen eine ausreichend hohe Wassertemperatur eingehalten wird. Es müssen in den Leitungsanlagen Bedingungen erzeugt werden, die eine gesundheitsgefährdende Vermehrung von Krankheitserregern (insbesondere Legionellen) verhindert. Hierzu steht dem Planer die Berechnung einer Zirkulationsanlage nach DVGW-Arbeitsblatt W 553 zur Verfügung.

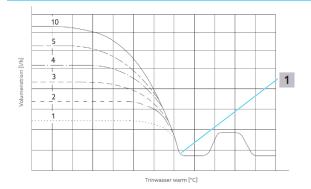
Die Hydraulik wird zum einen durch die Strömungsverluste in den Rohrleitungen der Zirkulationsstränge, zum anderen durch die Wärmeverluste, die das Warmwasser beim Durchströmen der Zirkulationsleitungen erfährt, bestimmt. Diese Wärmeverluste hängen von verschiedenen Parametern (Leitungslänge und -dimension, Isolierung, Umgebungs- und Leitungstemperatur) ab und sind jeweils anlagenspezifisch zu betrachten. Um die Wärmeverluste auszugleichen und die Temperatur hoch genug zu halten, muss durch die Zirkulationsleitung ein bestimmter Volumenstrom bzw. Wärmestrom fließen. In den vom Trinkwassererwärmer weit entfernt liegenden Zirkulationssträngen muss daher eine größere Warmwassermenge fließen als in näheren Strängen. Erzielt wird dies durch eine entsprechende Drosselung des Volumenstroms in den näher liegenden Zirkulationsleitungen, indem durch Regulierventile ein entsprechender Differenzdruck aufgebaut wird.

Zur Ermittlung dieser Differenzdrücke unter Einbehaltung vorgegebener Temperaturgrenzen zieht der Planer das DVGW Arbeitsblatt W 553 hinzu. Die Berechnung einer Zirkulationsleitung innerhalb einer Brauchwasseranlage kann annähernd für den stationären Betrieb (ohne Entnahme von Warmwasser) erfolgen. Da im Normalbetrieb die Entnahmemengen an den verschiedenen Stellen (Bad, Küche usw.) variieren, ändert sich auch ständig die notwendige Zirkulationswassermenge. Diesen wechselnden hydraulischen Betriebszuständen passt sich das thermostatische Regelventil Aquastrom TV automatisch optimal an.

Um in einer Zirkulationsanlage den nach DVGW-W553 geforderten hydraulischen Abgleich gewährleisten zu können, sollten die erforderlichen Volumenströme der einzelnen Stränge rechnerisch ermittelt werden. In großen Trinkwarmwasserzirkulationssystemen werden vor allem in den entferntesten Teilbereichen große Volumenströme benötigt. Dementsprechend müssen die Regelventile dimensioniert werden. Falls erforderlich, werden dazu mehrere Stränge zu einer Gruppe zusammengefasst und mit einem Trinkwasserzirkulationsventil als Gruppenventil untereinander abgeglichen. So können in nahe gelegenen Strängen kleine Volumenströme bei hohen Differenzdrücken realisiert und in entfernten Strängen entsprechend große Volumenströme erreicht werden.

Thermisches Regelverhalten

- 1 Restvolumenstrom gem. DIN 35861
- 2 Einstellbarer Regelbereich 50 °C 65 °C
- 3 Empfohlener Regelbereich 55 °C 60 °C
- 4 Desinfektionsbereich > 70 °C
- 5 Desinfektionsvolumenstrom
- 6 Ventil drosselt ab ca. 73 °C erneut auf Restvolumenstrom
- 7 Ventil öffnet ca. 6 °C nach Erreichen des minimalen Restvolumenstroms
- Ventil drosselt den Volumenstrom beim eingestellten Temperatur-Sollwert bis auf einen Restvolumenstrom


Das thermische Regelverhalten des Zirkulationsventils wird durch das abgebildete Diagramm beschrieben. Das Zirkulationsventil drosselt im normalen Betrieb (Temperaturbereich bis 60 °C) den Volumenstrom beim eingestellten Temperatur-Sollwert auf einen Restvolumenstrom.

Das in einen Zirkulationsstrang eingebaute Oventrop Ventil Aquastrom TV regelt in der Desinfektionsphase bei steigender Wassertemperatur ab ca. 6 K über der eingestellten Regeltemperatur automatisch von einem minimalen Volumenstrom auf einen höheren Durchflusswert. Dieser erhöhte Durchfluss wird ab einer Temperatur von ca. 73°C erneut auf den minimalen Volumenstrom gedrosselt. Dadurch wird ein höherer Differenzdruck in dem entsprechenden Strang aufgebaut, wodurch die thermische Desinfektion in den nachfolgenden Strängen beschleunigt wird.

Diese Leitungen erreichen somit schneller die erforderliche Desinfektionstemperatur als Leitungen, die in der Desinfektionsphase nicht hydraulisch unterstützt werden. Mit dieser hydraulischen Unterstützung kann sich somit die Desinfektionsphase in einer Zirkulationsanlage verkürzen, was wiederum eine Energieeinsparung ermöglichen kann.

Nach Beendigung der Desinfektion kehrt das Aquastrom TV bei sinkender Temperatur wieder in den Normalbetrieb auf den voreingestellten Temperatur-Sollwert zurück.

Volumenstrombegrenzung

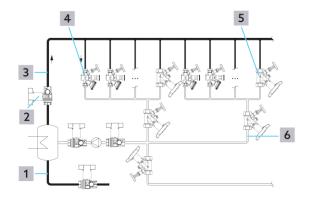
Eingestellter Temperatursollwert

Mit dem Zirkulationsventil Aquastrom TV kann zusätzlich der maximale Volumenstrom (dieser liegt im Temperaturbereich vor dem eingestellten Temperatur-Sollwert) begrenzt werden. Dieses ermöglicht den hydraulischen Abgleich der Zirkulationsleitungen insbesondere bei starkem Temperaturabfall, z. B. durch Kesselausfall oder zu hohem Wasserverbrauch.

Die Temperaturregelung reduziert innerhalb des voreingestellten Volumenstrombereichs den Volumenstrom entsprechend der im Diagramm dargestellten Regelcharakteristik.

Die Durchflusswerte und die zugehörigen Voreinstellwerte können aus den Auslegungsdiagrammen entnommen werden.

Aufbau


- 1 Gehäuse
 2 Entleerventil
 3 Zeigerthermometer
 4 Einstellskala Temperatur
 5 Einstellmarkierung Temperatur
- 6 Öffnung in der Einstellskala (zur Temperatureinstellung)
- 7 Einstellmarkierung Durchfluss
- 8 Handrad
- 9 Einstellskala Durchfluss

Abmessungen

Aquastrom TV

	Nennweite	L1 [mm]	L2 [mm]	B [mm]	H [mm]
PNG	DN 15	110	157	53	115
	DN 20	123	162	53	117
PHIS	DN 15	110	127	53	115
	DN 20	123	135	53	117

Anwendungen

- 1 Trinkwasser kalt
- 2 Absperrkugelhahn (z. B. Optibal TW)
- 3 Trinkwasser warm
- 4 Trinkwasserzirkulationsventil (z. B. Aquastrom TV)
- 5 Strangregulierventil (z. B. Aquastrom C)
- 6 Trinkwasserzirkulation

Auswahl

Artikelnummern

Aquastrom TV mit Innengewinde

Nennweite	Anschluss	kvs	ArtNr.
DN 15	Rp 1∕2	1,15	4202504
DN 20	Rp ³ / ₄	1,93	4202506

Aquastrom TV mit Außengewinde, flachdichtend

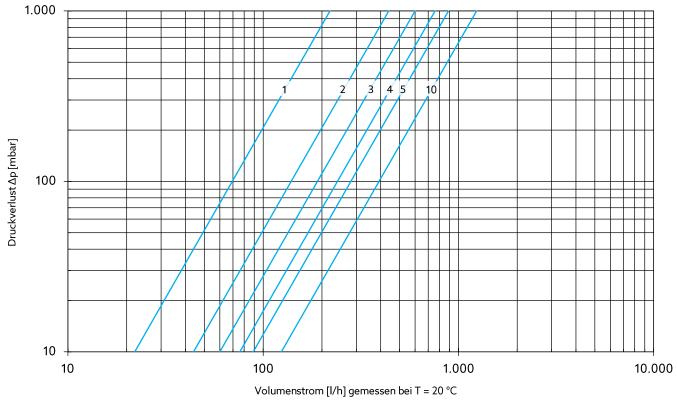
 Nennweite	Anschluss	kvs	ArtNr.
DN 15	G ¾	1,15	4202704
DN 20	G1	1,93	4202706

Aquastrom TV mit Innengewinde, ohne Zubehör

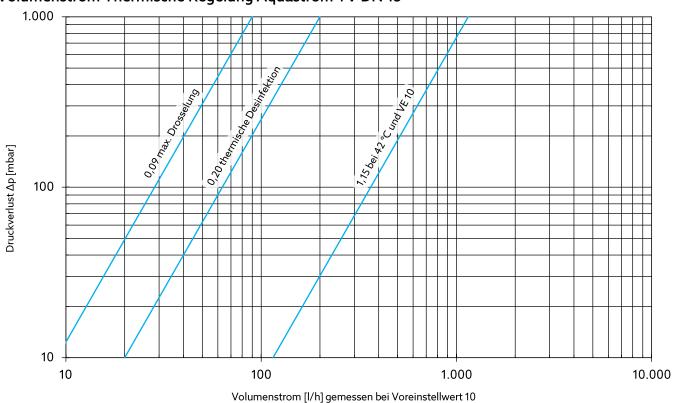
	Nennweite	Anschluss	kvs	ArtNr.
	DN 15	Rp 1∕2	1,15	4202604
46	DN 20	Rp 3/4	1,93	4202606

Aquastrom TV mit Außengewinde, flachdichtend, ohne Zubehör

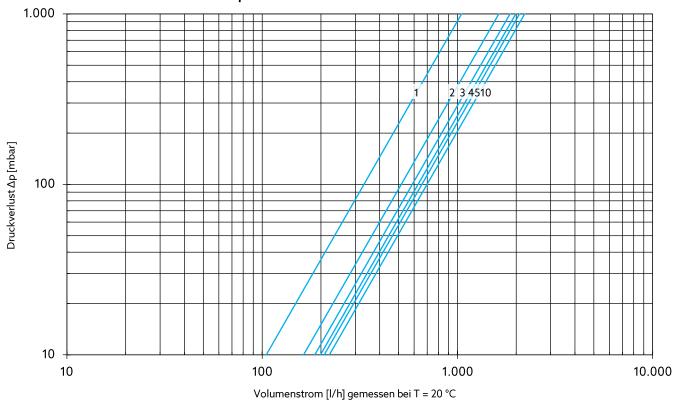
 Nennweite	Anschluss	kvs	ArtNr.
DN 15	G ³/4	1,15	4202804
DN 20	G 1	1,93	4202806

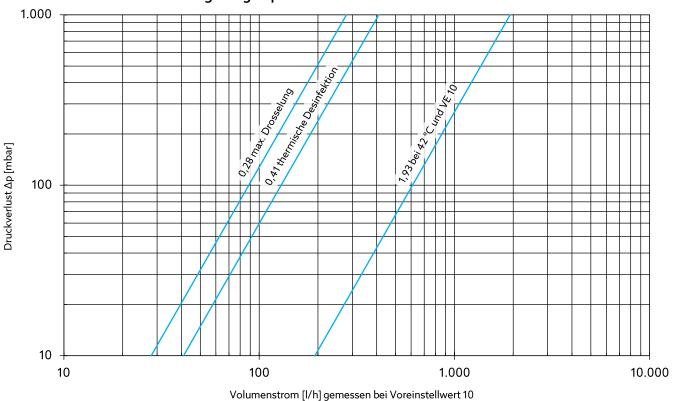

Zubehör und Ersatzteile

Ausgewähltes Zubehör und Ersatzteile für die Aquastrom TV. Für eine vollständige Übersicht siehe Produktkatalog.


Beschreibung	ArtNr.
Dämmschale für Ventile DN 15 und DN 20	4209610
Schlauchentleerung DN 8, G 1/4 AG	4205593
Zeigerthermometer	4205591
Plombierset	4208091
Sensor LW TQ Fühlerelement PT 1000 für die Fernüberwachung der Strangtemperatur	1150090
Sensor LW TQ Einsteckfühlerelement PT 1000 für die Fernüberwachung der Strangtemperatur	4205592
Aquastrom P Probenahmeventil DN 8, G 1/4 AG	4209102
Entleerungsventil DN 8, G 1/4 AG	4209602
Entleerungskugelhahn DN 8, G 1/4 AG	4200191

Auslegungsdiagramme


Volumenstrom Voreinstellwerte Aquastrom TV DN 15


Volumenstrom Thermische Regelung Aquastrom TV DN 15

Volumenstrom Voreinstellwerte Aquastrom TV DN 20

Volumenstrom Thermische Regelung Aquastrom TV DN 20

Änderungen vorbehalten • Alle Rechte vorbehalten • © 2024 Oventrop GmbH & Co. KG DE-08102-42025-DB-V2423 – Juni 2024

