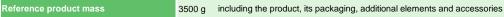
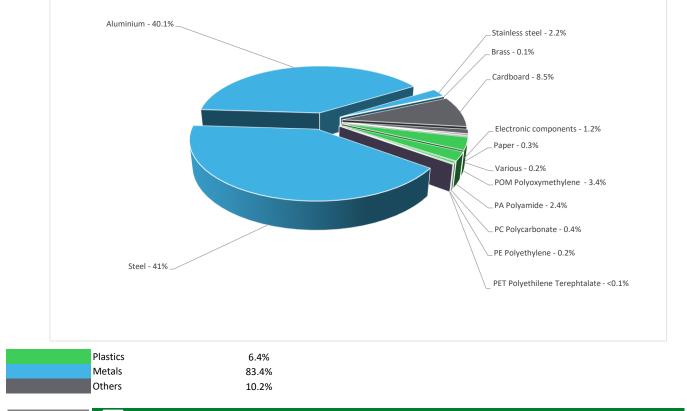
Product Environmental Profile

SpaceLogic MG900 Globe Valve Actuator





General information

Reference product	SpaceLogic MG900 Globe Valve Actuator - MG900-SU
Description of the product	The MG900 SR is a linear eletro-mechanicl actuator with spring return operation for the control of two-way and three way globe valves.
Description of the range	Single product
Functional unit	Other switchgear and controlgear solutions mentioned in the scope (e.g. fuses TC32, all-or-nothing relays TC94, Measuring relays and protection equipment TC95), apply the general rules of PCR and mention in the accompanying report the functional unit, the reference product characteristics, the reference lifetime and the use scenario which are applied consistently with the relevant IEC technical standards.
Specifications are:	U = Rated voltage(V) = 24 V AC/DC Transformer rated power = 50 VA IP degree of protection = IP54

Constituent materials

Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website https://www.se.com

(1) Additional environmental information

End Of Life

Recyclability potential:

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

\mathcal{O} Environmental impacts

90%

Reference service life time	10 years								
Product category	Other equipments - Active product								
Installation elements	The product doesn't require special installation procedure and requires little to no energy to install.								
Use scenario	The product is in active mode 3.33% of the time with a power use of 9.543W, in standby mode 90% of the time with a power use of 4W and in other mode 6.67% of the time with a power use of 0.784W for 10 years.								
Time representativeness	The collected data are representative of the year	r 2024							
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and Representative of the actual type of technologies used to make the product.								
Geographical representativeness	Rest of the World								
	[A1 - A3]	[A5]	[B6]	[C1 - C4]					
		Electricity Mix; Low voltage; 2020; Europe, EU-27							
Energy model used		Electricity Mix; Low voltage; 2020; United States, US	Electricity Mix; Low voltage; 2020; United States, US	Electricity Mix; Low voltage; 2020; United States, US					
	Electricity Mix; High voltage; 2020; Latvia, LV	Electricity Mix; Low voltage; 2020; Asia Pacific, APAC	Electricity Mix; Low voltage; 2020; Asia Pacific, APAC	Electricity Mix; Low voltage; 2020; Asia Pacific, APAC					
		Electricity Mix; Low voltage; 2020; France, FR	Electricity Mix; Low voltage; 2020; France, FR	Electricity Mix; Low voltage; 2020; France, FR					

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

Mandatory Indicators		Spa	ceLogic MG900	Globe Valve Act	uator - MG900-S	U		
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and Ioads
Contribution to climate change	kg CO2 eq	1.93E+02	5.33E+01	6.94E+00	3.26E-02	1.27E+02	5.99E+00	-2.54E+01
Contribution to climate change-fossil	kg CO2 eq	1.92E+02	5.27E+01	6.94E+00	3.26E-02	1.27E+02	5.99E+00	-2.48E+01
Contribution to climate change-biogenic	kg CO2 eq	7.85E-01	5.65E-01	0*	0*	2.19E-01	0*	-5.99E-01
Contribution to climate change-land use and land use change	kg CO2 eq	1.79E-05	1.79E-05	0*	0*	0*	0*	0.00E+00
Contribution to ozone depletion	kg CFC-11 eq	3.06E-05	2.39E-05	6.10E-06	0*	6.16E-07	4.41E-08	-3.56E-06
Contribution to acidification	mol H+ eq	1.03E+00	3.29E-01	2.85E-02	1.67E-04	6.57E-01	2.01E-02	-1.61E-01
Contribution to eutrophication, freshwater	kg P eq	5.85E-04	2.40E-04	8.10E-07	6.02E-08	3.35E-04	8.21E-06	-8.34E-05
Contribution to eutrophication, marine	kg N eq	1.55E-01	5.75E-02	1.30E-02	7.80E-05	7.97E-02	4.81E-03	-1.40E-02
Contribution to eutrophication, terrestrial	mol N eq	2.04E+00	6.22E-01	1.41E-01	8.01E-04	1.23E+00	5.25E-02	-1.55E-01
Contribution to photochemical ozone formation - human health	kg COVNM eq	5.29E-01	2.13E-01	4.70E-02	1.91E-04	2.53E-01	1.69E-02	-5.24E-02
Contribution to resource use, minerals and metals	kg Sb eq	3.75E-03	3.71E-03	0*	0*	4.11E-05	0*	-1.83E-03
Contribution to resource use, fossils	MJ	4.50E+03	8.71E+02	8.60E+01	0*	3.21E+03	3.40E+02	-3.97E+02
Contribution to water use	m3 eq	2.54E+01	1.40E+01	3.51E-01	3.06E-02	9.29E+00	1.73E+00	-6.24E+00

Inventory flows Indicators	SpaceLogic MG900 Globe Valve Actuator - MG900-SU								
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and Ioads	
Contribution to renewable primary energy used as energy	MJ	7.89E+02	2.18E+01	0*	0*	7.67E+02	0*	-1.36E+01	
Contribution to renewable primary energy used as raw material	MJ	6.36E+00	6.36E+00	0*	0*	0*	0*	0.00E+00	
Contribution to total renewable primary energy	MJ	7.95E+02	2.81E+01	0*	0*	7.67E+02	0*	-1.36E+01	
Contribution to non renewable primary energy used as energy	MJ	4.50E+03	8.65E+02	8.60E+01	0*	3.21E+03	3.40E+02	-3.97E+02	
Contribution to non renewable primary energy used as raw material	MJ	5.72E+00	5.72E+00	0*	0*	0*	0*	0.00E+00	
Contribution to total non renewable primary energy	MJ	4.50E+03	8.71E+02	8.60E+01	0*	3.21E+03	3.40E+02	-3.97E+02	
Contribution to use of secondary material	kg	2.18E-04	2.18E-04	0*	0*	0*	0*	0.00E+00	
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to net use of fresh water	m³	5.94E-01	3.26E-01	8.17E-03	7.12E-04	2.18E-01	4.02E-02	-1.45E-01	
Contribution to hazardous waste disposed	kg	1.94E+02	1.89E+02	0*	0*	5.22E+00	5.84E-02	-1.45E+02	
Contribution to non hazardous waste disposed	kg	8.36E+01	6.15E+01	0*	3.21E-01	2.13E+01	4.81E-01	-3.80E+01	
Contribution to radioactive waste disposed	kg	4.99E-02	4.38E-02	1.37E-03	0*	4.68E-03	4.65E-05	-2.86E-02	
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to materials for recycling	kg	3.36E+00	4.32E-01	0*	0*	0*	2.93E+00	0.00E+00	
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00	
Contribution to exported energy	MJ	3.33E-02	4.34E-03	0*	0*	0*	2.90E-02	0.00E+00	
* represents less than 0.01% of the total life cycle of the refer	ence flow								
Contribution to biogenic carbon content of the product	kg of C	0.00E+00							
Contribution to biogenic carbon content of the associated packaging	kg of C	8.88E-02							

* The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators				SpaceLog	jic MG900	Globe V	alve Actu	uator - MG900-S	U
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	1.27E+02	0*	0*	0*	0*	0*	1.27E+02	0*
Contribution to climate change-fossil	kg CO2 eq	1.27E+02	0*	0*	0*	0*	0*	1.27E+02	0*
Contribution to climate change-biogenic	kg CO2 eq	2.19E-01	0*	0*	0*	0*	0*	2.19E-01	0*
Contribution to climate change-land use and land use chan	ge kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to ozone depletion	kg CFC-11 eq	6.16E-07	0*	0*	0*	0*	0*	6.16E-07	0*
Contribution to acidification	mol H+ eq	6.57E-01	0*	0*	0*	0*	0*	6.57E-01	0*
Contribution to eutrophication, freshwater	kg P eq	3.35E-04	0*	0*	0*	0*	0*	3.35E-04	0*
Contribution to eutrophication marine	kg N eq	7.97E-02	0*	0*	0*	0*	0*	7.97E-02	0*
contribution to eutrophication, terrestrial	mol N eq	1.23E+00	0*	0*	0*	0*	0*	1.23E+00	0*
contribution to photochemical ozone formation - human ealth	kg COVNM eq	2.53E-01	0*	0*	0*	0*	0*	2.53E-01	0*
Contribution to resource use, minerals and metals	kg Sb eq	4.11E-05	0*	0*	0*	0*	0*	4.11E-05	0*
ontribution to resource use, fossils	MJ	3.21E+03	0*	0*	0*	0*	0*	3.21E+03	0*
Contribution to water use	m3 eq	9.29E+00	0*	0*	0*	0*	0*	9.29E+00	0*

Inventory flows Indicators					ic MG900	Globe V	alve Actu	uator - MG900-S	U
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding renewable primary energy used as raw material	MJ	7.67E+02	0*	0*	0*	0*	0*	7.67E+02	0*
Contribution to use of renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of renewable primary energy resources	MJ	7.67E+02	0*	0*	0*	0*	0*	7.67E+02	0*
Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material	MJ	3.21E+03	0*	0*	0*	0*	0*	3.21E+03	0*
Contribution to use of non renewable primary energy resources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to total use of non-renewable primary energy resources	MJ	3.21E+03	0*	0*	0*	0*	0*	3.21E+03	0*
Contribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to net use of freshwater	m³	2.18E-01	0*	0*	0*	0*	0*	2.18E-01	0*
Contribution to hazardous waste disposed	kg	5.22E+00	0*	0*	0*	0*	0*	5.22E+00	0*
Contribution to non hazardous waste disposed	kg	2.13E+01	0*	0*	0*	0*	0*	2.13E+01	0*
Contribution to radioactive waste disposed	kg	4.68E-03	0*	0*	0*	0*	0*	4.68E-03	0*
Contribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
Contribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

* represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology 0/0 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2501011_V1	Drafting rules	PCR-4-ed4-EN-2021 09 06						
		Supplemented by	PSR-0005-ed3.1-EN-2023 12 08						
Date of issue	01-2025	Information and reference documents	www.pep-ecopassport.org						
		Validity period	5 years						
Independent verification of the declaration and data, in compliance with ISO 14021 : 2016									
Internal X External									
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
The components of the present PEP may not be compared with components from any other program.									
Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"									

Schneider Electric Industries SAS Country Customer Care Center http://www.se.com/contact 35, rue Joseph Monier CS 30323 F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439 Capital social 928 298 512 €

www.se.com

ENVPEP2501011_V1

Published by Schneider Electric

©2024 - Schneider Electric - All rights reserved