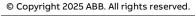
PRODUCT ENVIRONMENTAL PROFILE **Environmental Product Declaration**


ABB Installation Contactor ESB100..N

REGISTRATION NUMBER		DRAFTING RULES: PCR-ED4-EN-2021 09 06			
ABBG-00437-V01.01-EN		SUPPLEMENTED BY PSR-0005-ED3.1-EN-2023 12 08			
VERIFIER ACCREDITATION NUMB	ER	INFORMATION AND REFERENCE DOCUMENTS			
VH51		www.pep-ecopassport.org			
DATE OF ISSUE		VALIDITY PERIOD			
02-2025		5 years			
INDEPENDENT VERIFICATION OF	COMPLIANCE WITH ISO 140 40: 2006				
INTERNAL	EXTERNAL 🗵		_		
THE PCR REVIEW WAS CONDUCTED BY A PANEL OF EXPERTS CHAIRED BY JULIE ORGELET (DDEMAIN)					
PEPS ARE COMPLIANT WITH XP C08-100-1:2016 AND EN 50693:2019 OR NF E38-500 :2022					

THE COMPONENTS OF THE PRESENT PEP MAY NOT BE COMPARED WITH COMPONENTS FROM ANY OTHER PROGRAM.

EPD Owner ABB STOTZ-KONTAKT GmbH, 69123 Heidelberg, Germany

www.abb.com

Manufacturer name

and address

ABB STOTZ-KONTAKT GmbH - Site Heidelberg, 78132, Heidelberg

Baden-Württemberg Germany

Company contact EPD_ELSP@in.abb.com

Reference product ESB100-40N-06 Installation Contactor

Description of the product

The ESB100..N installation contactors are used to control single and three-phase loads up to 63 A and can be operated by AC or DC. These contactors are made for use in household applications as well as in industrial environments.

Establish and cut off the supply of a downstream installation from an electrical and/or mechanical control characterised by the composition of the poles or type of contacts X, a rated voltage of Ue, a rated current le, a control circuit voltage Uc, with Np poles, and in the Industrial application areas, according to the appropriate use scenario, and during the reference service life of the product of 20 years.

Functional unit

Installation Contactor	ESB100-40N-06
X = contactor type	NO/NC
Ue = Rated operating voltage (V)	220 V DC/400V AC
le = Rated operating current (A) AC-1/AC-7a	100
Np = Number of poles or number of contacts	4
Uc = control circuit voltage	230

Materials and processes data are specific for the production of ESB100..N Installation Contactor and

The PEP covers variants shortly clustered as follows:

Other product ranges covered

Product cluster

ESB100-40N ESB100-20N

Reference lifetime 20 years

Product category Electrical, Electronic and HVAC-R Products '3.8 Contactors, remote control switch' family'

Use Scenario

The use phase has been modeled based on the sales mix data (2023), and the corresponding low

voltage electricity countries mix

Raw materials & Manufacturing: [Europe / Global]

Geographical Assembly: [Germany]

representativeness Distribution / Use: [Global] specific sales mix

EoL: [Global]

representativeness Ecoinvent v3.10 for Secondary Data.

LCA Study

This study is based on the LCA study described in the LCA report
1SAC200430H0001

EPD type Products family declaration

EPD scope "Cradle to grave"

Year of reported primary data

Technological

2023

LCA software SimaPro 9.6.0.1 (2024)
LCI database Ecoinvent v3.10 (2024)

LCIA methodology EN 15804:2012+A2:2019

STATUS SI	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved P	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	2/19

[©] Copyright 2025 ABB. All rights reserved.

Contents

ABB Purpose & Embedding Sustainability	4
General Information	4
ESB100N Installation Contactors Product Cluster	
Constituent Materials	5
LCA background information	6
Functional unit and Reference Flow	
System boundaries and life cycle stages	7
Temporal and geographical boundaries	8
Boundaries in the life cycle	8
Data quality	8
Environmental impact indicators	8
Limitations and simplifications	9
Manufacturing stage	10
Distribution	11
Installation	11
Use	11
End of life	
Environmental impacts	13
References	19

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	3/19

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 110 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control.

ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

The ABB STOTZ-KONTAKT GmbH company was founded in 1891 and develops, manufactures, and sells products for the electrical installation and automation of buildings, machines and plants. For the Smart Power, the company is the competence centre for Installation Contactors, Overload relays, Mini Contactors, Manual Motor Starter, Time Relays, Monitoring Relays, Motor Controller, Power Supplies, Interface Products and Safety Products.

- Heidelberg Workshop Smart Power is about 5000 sq. m.
- Hornberg Workshop is around 6500 sq.m.
- Employees 1000 person.
- Global R&D and product management are located at the factory.

ISO 9001:2015 - Quality Management Systems Heidelberg & Hornberg

ISO 45001:2018- Occupational Health and Safety Assessment Series- Heidelberg

ISO 50001:2018- Energy management systems- Heidelberg & Hornberg

ISO 14001:2015- Environmental management systems - Heidelberg

The current analysis is performed on the Installation Contactor. The ESB100..N installation contactors are used to control single and three-phase loads up to 100 A and can be operated by AC or DC. These contactors are made for use in household applications as well as in industrial environments.

In the factory, the different components and subassemblies are assembled on the manufacturing line. All components and subassemblies are produced by ABB's suppliers. These are assembled and tested as per the standards within the factory premises.

Approved Public ABBG-00437-V01.01-EN 1SAC200434H0001 A.002 en 4/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	4/19

ESB100..N Installation Contactors Product Cluster

Product cluster declared in this PEP of ESB100..N Installation contactor covers the following variants:

Product	Number of poles	Rated Control voltage, U [V]	Rated current, In [A]
ESB100-40N	4	24-230	100
ESB100-20N	2	24-230	100

Table 1: Technical characteristics of ESB100..N Installation contactor

The accessories associated with these products are also included in the study.

Reference Product:

The reference product for the LCA of the complete range of ESB100...N is ESB100-40N-06 (chosen as it is the highest selling product in the range).

Constituent Materials

The ESB100-40N-06 weights about 869.2 g including its installed accessories and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
	Steel	M-119	340.8	39.2%
Metals	Cu and Cu Alloys	M-121	214.9	24.7%
Metais	Precious Metals	M-159	11.9	1.4%
	Stainless Steel	M-100	1.9	0.2%
	Polyamide	M-258	228.5	26.3%
Plastics	Polycarbonate	M-254	27.5	3.2%
	PolyOxyMethylene	M-205	1.9	0.2%
Other	Paper/Cardboard	M-341	38.8	4.5%
Other	Others	N/A	2.9	0.3%
Total			869.2	100.0%

Table 2: Weight of materials ESB100-40N-06

Approved Public ARRG-00437-V01-01-FN 15AC200434H0001 A 002 ep 5/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved 1 daile Abbe 00+31 vol.01 EN 13Ac200+3+110001 A.002 CH 3/15	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	5/19

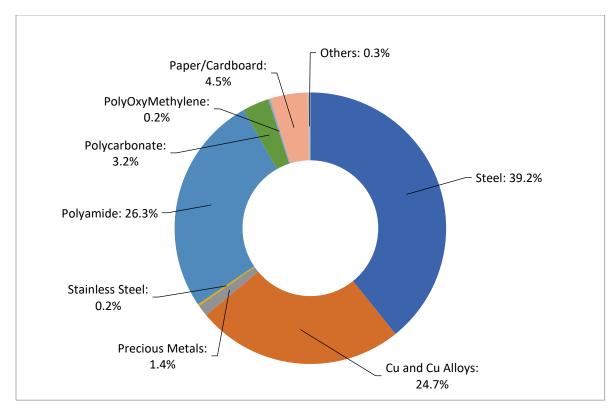


Figure 1: Composition of ESB100-40N-06

Packaging weighs 38.8 g, with the following substance composition:

Material	Unit	Total	%
Corrugated Cardboard	g	38.8	4.5%
Paper	g	0	0%
Total	g	38.8	4.5%

Table 3: Weight of Packaging for ESB100-40N-06

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

Approved Public ABBG-00437-V01.01-EN 1SAC200434H0001 A.002 en 6/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	6/19

Establish and cut off the supply of a downstream installation from an electrical and/or mechanical control characterized by the composition of the poles or type of contacts X, a rated voltage of Ue, a rated current Ie, a control circuit voltage Uc, with Np poles, and if applicable the specific specifications, in the Industrial application areas, according to the appropriate use scenario, and during the reference service life of the product of 20 years.

Installation Contactor	ESB100-40N-06
X = Contactor type	NO/NC
Ue = Rated operating voltage (V)	220 V DC/400V AC
le = Rated operating current (A)	100
Np = Number of poles or number of contacts	4
Uc = control circuit voltage	230

The Reference Flow of the study is a Installation Contactor (including its packaging and accessories) with mass described, table 2.

System boundaries and life cycle stages

The life cycle of the Installation Contactor, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semi-finished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems

UPSTREAM	CORE		DOWNSTREA	М	
Man	ufacturing	Distribution	Installation	Use	End-of-Life (EoL)
Acquisition of raw materials Transport to manufacturing site	Components/parts manufacturing Assembly Packaging EoL treatment of generated waste	Transport to distributor/ logistic center Reconditioning at distributor/ logistic center Transport to place of use	Installation EoL treatment of generated waste (packaging)	Usage Maintenance EoL treatment of generated waste	Deinstallation Collection and transport EoL treatment

Table 4: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	7/19
© Copyright 2025 A	BB All rights reserved					

Temporal and geographical boundaries

The ABB component suppliers are sourced all over the Europe. All primary data collected from ABB are from 2023, which is a representative production year for production technology of Installation Contactors at ABB Heidelberg. The geographical representativeness for the other life stages is global. The geographical and technological representativeness for the secondary data is ecoinvent [6].

The selected ecoinvent [6] processes in the LCA model have a global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to "PCR-ed4-EN-2021 09 06" and EN 50693 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR-ed4-EN-2021 09 06 and the EN 50693:2019 [3] standard establish four indicators for GWP: GWP (total) which includes all greenhouse gases; GWP (fossil fuels); GWP (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; GWP (land use) - land use and land use transformation. Other indicators as per the PCR[1].

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	8/19

Allocation Rules

Allocation coefficients are based on the ESB100..N line's occupancy area for electricity consumption since, apart from assembly processes, the whole production line is temperature-regulated throughout the year. The allocation of the total amount of waste generated by the production line and water consumption, has been based on this criterion.

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km as per PCR. This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Application of grease lubricant on the Installation Contactor operating mechanism has been excluded since it is negligible.

Surface treatments like galvanizing, tin and silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model.

Energy Models

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material extraction and processing	A1-A2	Electricity, {RER} market group for Cut-off Electricity, {GLO} market group for Cut-off	Based on materials and supplier locations
Manufacturing	А3	Electricity, {DE} market for Cutoff	Specific Energy model for ABB Germany manufacturing plant, 100% renewable
Installation (Packaging EoL)	A5	Electricity, {GLO} market group for Cut-off	
Use Stage	B1	Electricity, [country]x market for Cut-off, S **	Low voltage, based on 2023 country sales mix
EoL	C1-C4	Electricity, {GLO} market group for Cut-off	

Table 5: Energy models used in each LCA stage.

Approved Public ABBG-00437-V01.01-EN 1SAC200434H0001 A.002 en 9/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	9/19

^{**} Please refer the Use Phase for further description

Inventory Analysis

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP software were used. They are a list of all the components and assemblies that constitute the finished product, organized by level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area and other weight data, taken from technical drawings. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Searates).

All primary data collected from ABB are from 2023, which was a representative production year. The ecoinvent v3.10 cut-off by classification system processes [6] are used to model the background system of the processes.

Due to the large amounts of components in the Installation Contactor, raw material inputs have been modelled with data from ecoinvent[6] representing either a European [RER] or Global [RoW] market coverage based on the supplier's location. These datasets are assumed to be representative.

Manufacturing stage

The Installation Contactor are composed of a multitude of components, all of which are made from of numerous materials. Most of the inputs to the products' manufacturing stage are already produced component parts.

The single use packaging as well as paper documentation are also included in the analysis in the manufacturing stage. ABB receives packaging components from outside suppliers and packages the Installation Contactor before shipping them.

Most of the inputs to the products' manufacturing stage are already produced component parts from the supply chain. In the ABB manufacturing plant, the different components and subassemblies are assembled into the Installation Contactor. All the semi-finished and ancillary products are produced by ABB's suppliers.

The entire Installation Contactors suppliers' network has been modelled with the calculation of each transportation stage: from the first manufacturing supplier to the next. All the distances from the last subassembly suppliers' factories to the ABB manufacturing facility have been calculated. All the distances from the last subassembly suppliers' factories to the ABB manufacturing facility have been calculated.

In the ABB factory, the different components and subassemblies are assembled into the Installation Contactor. All the semi-finished and ancillary products are produced by ABB's suppliers.

The energy mix used for the production phase is representative for ABB Germany production site and includes renewable energy only.

The complete energy mix has been modeled considering the certificate on Guarantee of origins provided to ABB for the year 2023.

Approved Public ABBG-00437-V01.01-EN 1SAC200434H0001 A.002 en 10/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	10/19

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific 2023 sales mix data for this product cluster (SAP ERP sales data as a source).

Since no specific data is available for the transport distances from the Distribution Centre to place of actual use (Customer site), distances of 1000 km are assumed (local/domestic transport by lorry, according to PCR [1]).

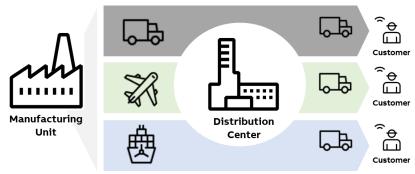


Figure 2: Distribution methodology.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the Installation Contactor.

For the disposal of the packaging after installation of the Installation Contactor at the end of its life, a transport distance of 100 km (according to PSR[2]) was assumed. The chosen transportation datasets are from Ecoinvent [6].

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest Eurostat data (EU-27) (2021) available. For non-European scope, the disposal scenario used is as per PSR[2].

Use

Use and maintenance are modelled according to the PCR [1].

During the use phase, Installation Contactor, dissipates some electricity due to power losses. They are calculated according to the data provided in the catalogue of the Installation Contactor and following the PCR [1] & PSR [2] rules:

Parameters		
lu	[A]	100
Load factor	[%]	50
h/year	[h]	8760
RSL	[years]	20
Time operating coefficient	[%]	50

Table 6: Use phase parameters.

		R REG. NUMBER DOCUMEN	T ID. REV.	LANG	PAGE
Approved Public	ABBG-00437-	V01.01-EN 1SAC200	0434H0001 A.002	en	11/19

The formula for the calculation of the electricity consumed is shown below and it is described as follows, where P_{use} is the power consumed by the switch at a given value of current:

$$E_{use} [kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000}$$

The above calculations have been performed according to the number of poles on which relevant current flows during use phase, where Total Power is the sum of Coil power loss and Power loss from the poles.

The Energy model used for this phase has been modelled based on the 2023 actual sales mix data (SAP ERP sales data as a source). From the Ecoinvent [6] database, the low voltage electricity country mix for each country(x) has been selected with its respective percentage on the total sales mix (Electricity, low voltage [country]x | market for | Cut-off, S).

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to PCR [1] and IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9]. Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]). Disassembly manuals can be provided to the customer to support product disposal.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	12/19

Environmental impacts

The following tables show the environmental impact indicators of the life cycle of a Installation Contactors, as indicated by PEP Ecopassport PCR and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different modules (upstream, core and downstream) and stages (manufacturing, distribution, installation, use and end-of-life).

ESB100-40N-06

Impact category	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
GWP-total	kg CO2 eq	5.51E+02	1.30E+01	1.56E+00	2.25E-02	5.36E+02	3.52E-01
GWP-fossil	kg CO2 eq	5.26E+02	1.29E+01	1.56E+00	8.32E-04	5.11E+02	3.50E-01
GWP-biogenic	kg CO2 eq	2.40E+01	4.77E-02	2.48E-04	2.17E-02	2.39E+01	1.31E-03
GWP-luluc	kg CO2 eq	1.05E+00	1.46E-02	1.47E-04	2.95E-07	1.04E+00	2.70E-04
ODP	kg CFC11-eq	7.18E-06	1.33E-07	2.47E-08	1.38E-11	7.02E-06	3.87E-09
AP	mol H+ eq	2.48E+00	2.31E-01	6.51E-03	5.30E-06	2.24E+00	1.48E-03
EP-freshwater	kg P eq	4.27E-01	2.97E-02	3.19E-05	8.40E-08	3.97E-01	8.70E-05
EP-marine	kg N eq	4.82E-01	3.44E-02	2.60E-03	5.96E-06	4.44E-01	3.84E-04
EP-terrestrial	mol N eq	4.59E+00	4.10E-01	2.84E-02	2.16E-05	4.15E+00	3.75E-03
POCP	kg NMVOC eq	1.44E+00	1.07E-01	9.30E-03	7.72E-06	1.32E+00	1.28E-03
ADP-m&m	kg Sb eq	1.80E-02	1.27E-02	7.50E-07	1.90E-09	5.33E-03	3.37E-07
ADP-fossil	MJ	7.86E+03	1.75E+02	2.09E+01	9.58E-03	7.66E+03	4.58E+00
WDP	m3 of equiv. depriv.	1.26E+02	6.19E+00	3.76E-02	-7.47E-05*	1.19E+02	3.47E-02
PENRE	MJ	7.85E+03	1.69E+02	2.09E+01	9.58E-03	7.66E+03	4.58E+00
PENRM	MJ	6.49E+00	6.49E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	7.86E+03	1.75E+02	2.09E+01	9.58E-03	7.66E+03	4.58E+00
PERE	MJ	2.56E+03	1.85E+01	1.02E-01	2.26E-04	2.54E+03	3.01E-01
PERM	MJ	4.99E-01	4.99E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	2.56E+03	1.90E+01	1.02E-01	2.26E-04	2.54E+03	3.01E-01
SM	kg	8.06E-02	8.06E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PET	MJ	1.04E+04	1.94E+02	2.10E+01	9.81E-03	1.02E+04	4.88E+00
FW	m3	5.51E+00	1.71E-01	1.23E-03	2.61E-06	5.34E+00	1.29E-03
HWD	kg	2.47E-02	2.99E-03	1.44E-04	7.44E-08	2.15E-02	1.70E-05
N-HWD	kg	3.26E+01	1.53E+00	2.20E-01	2.90E-02	3.01E+01	6.86E-01
RWD	kg	2.89E-02	3.00E-04	2.01E-06	3.76E-09	2.86E-02	5.89E-06
CfR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MfR	kg	7.70E-01	2.03E-01	0.00E+00	2.55E-02	0.00E+00	5.42E-01
MfER	kg	1.43E-02	0.00E+00	0.00E+00	1.05E-02	0.00E+00	3.82E-03
EN	MJ by energy vector	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PM	disease inc.	1.78E-05	1.08E-06	3.05E-08	7.39E-11	1.67E-05	2.16E-08
IRP	kBq U-235 eq	1.16E+02	1.20E+00	8.23E-03	1.51E-05	1.15E+02	2.41E-02
ETP-fw	CTUe	2.63E+03	7.03E+02	1.79E+00	1.41E-01	1.93E+03	9.26E-01
HTP-c	CTUh	1.12E-06	1.66E-07	2.30E-09	6.56E-12	9.49E-07	7.80E-10
HTP-nc	CTUh	8.12E-06	1.67E-06	1.57E-08	5.48E-11	6.44E-06	2.24E-09
SQP	Pt	2.12E+03	1.44E+02	3.72E+00	8.55E-03	1.97E+03	1.85E+00

^{*} Negative value due to cardboard packaging. Ecoinvent dataset: "Waste paperboard {RoW} | treatment of waste paperboard, sanitary landfill | Cut-off, U"

Table 7: Impact indicators for ESB100-40N-06

Approved Public ABBG-00437-V01.01-EN 1SAC200434H0001 A.002 en 13/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	13/19

Impact category	Unit	Total
Biogenic Carbon content of the product	kg	0
Biogenic Carbon content of packaging	kg	7.71E-03

Table 8: Inventory Flow indicators of ESB100-40N-06

Environmental impact indicators

GWP-total	Global Warming Potential total (Climate change)
GWP-fossil	Global Warming Potential fossil
GWP-biogenic	Global Warming Potential biogenic
GWP-luluc	Global Warming Potential land use and land use change
ODP	Depletion potential of the stratospheric ozone layer
AP	Acidification potential
EP-freshwater	Eutrophication potential - freshwater compartment
EP-marine	Eutrophication potential - fraction of nutrients reaching marine end compartment
EP-terrestrial	Eutrophication potential -Accumulated Exceedance
POCP	Formation potential of tropospheric ozone
ADP-m&m	Abiotic Depletion for non-fossil resources potential
ADP-fossil	Abiotic Depletion for fossil resources potential, WDP
WDP	Water deprivation potential.

Resource use indicators

PERE	Use of renewable primary energy excluding renewable primary energy resources used as raw material
	energy resources used as raw material
PERM	Use of re-newable primary energy resources used as raw material
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PENRE	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material
PENRM	Use of non-renewable primary energy resources used as raw material
PENRT	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PET	Total use of primary energy during the life cycle

Secondary materials, water and energy resources

SM	Use of secondary materials
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels

Approved Public ARRG-00/37-V01-01-EN 15AC200/3/H0001 A 002 en 1	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved Fubic Abbd-00451-V01.01-EN 15AC20045410001 A.002 EN 15	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	14/19

Waste category indicators

HWDHazardous waste disposedN-HWDNon-hazardous waste disposedRWDRadioactive waste disposed

Output flow indicators

MfR	Materials for recycling
MfER	Materials for energy recovery
CfR	Components for Reuse
EN	Energy for reuse

Others indicators

Efp	Emissions of Fine particles
IrHH	Ionizing radiation, human health
ETX FW	Ecotoxicity, freshwater
HTX CE	Human toxicity, carcinogenic effects
HTX N-CE	Human toxicity, non-carcinogenic effects

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	15/19

Extrapolation for Homogeneous environmental family

This PEP covers different build configurations of ESB100..N Installation contactor. All the analyzed configurations have the same main functionality, product standards and manufacturing technology. The different life cycle stages can be extrapolated to other products of the same homogeneous environmental family by applying a rule of proportionality to the parameters in the following tables, divided by different life cycle stages.

For other products than the Reference product covered by this PEP, the environmental impacts for each phase of the lifecycle are obtained by multiplying the values of the Reference product by the following factor in listed table. *If the factor is "1", the impacts of the phase of the life cycle are same in comparison to the reference product

LCA Phase: Manufacturing

This LCA Stage is based on total weight of product including packaging, material composition and structure of variants.

Product	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	dΩO	AP	EP-freshwater	EP-marine	EP-terrestrial	дрод	ADP-minerals & metals	ADP-fossil	WDP
ESB100-40N	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ESB100-20N	0.50	0.50	0.12	0.54	0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50

Table 9: Extrapolation factors for ESB100..N- Manufacturing

LCA Phase: Distribution

This LCA Stage is based on total weight of product including packaging of the variants.

Product	Factor
ESB100-40N	1.00
ESB100-20N	0.51

Table 10: Extrapolation factors for ESB100..N – Distribution

Approved Public ABBG-00437-V01.01-EN 1SAC200434H0001 A.002 en 16/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	16/19

[©] Copyright 2025 ABB. All rights reserved.

LCA Phase: Installation

This LCA Stage is based on EoL of the packaging materials of the variants.

Product	Factor
ESB100-40N	1.00
ESB100-20N	0.60

Table 11: Extrapolation factors for ESB100..N - Installation

LCA Phase: Use

This LCA Stage is based on energy consumption of the product and variants.

	Number of main poles	Factor
ESB100-20N	2	0.8
ESB100-40N	4	1.0

Table 12: Extrapolation factors for ESB100..N - Use Phase

LCA Phase: End of Life

This LCA Stage is based on total weight of product, material composition and structure of the variants.

Product	Factor				
ESB100-40N	1.00				
ESB100-20N	0.50				

Table 13: Extrapolation factors for ESB100..N - EoL

Approved Public ABBG-00437-V01.01-EN 1SAC200434H0001 A.002 en 17/19	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
	Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	17/19

According to the waste treatment scenario calculation in Simapro, based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

Product	Recyclability potential					
ESB100-40N-06	94.2%					

Table 14: Recyclability potential of ESB100-40N-06

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	18/19

References

- [1] PEP Ecopassport PCR-ed4-EN-2021 09 06 "Product Category Rules for Electrical, Electronic and HVAC-R Products" (published: 6th September 2021)
- [2] PEP Ecopassport PSR-0005-ED3.1-EN-2023 12 08 "Product Specific Rules for Electrical Switchgear and Control gear Solutions"
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006 Environmental management -Life cycle assessment Principles and framework
- [5] ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- [6] ecoinvent v3.10 (2023). ecoinvent version 3.10. Swiss, Centre for Life Cycle Inventories, Dübendorf, Switzerland
- [7] PRé Consultants, 2023. Software SimaPro versione 9.5.0.1 (www.pre.nl).
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019).
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment Edition 1.0 2012-10
- [10] 1SAC200430H0001-LCA Report

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG	PAGE
Approved	Public	ABBG-00437-V01.01-EN	1SAC200434H0001	A.002	en	19/19