

PRODUCT ENVIRONMENTAL PROFILE Environmental Product Declaration ABB MCCB XT XT5 Ekip (CN)

XT5 Ekip

REGISTRATION NUMBER		IN COMPLIANCE WITH PCR-ED4-EN-2021 09 06		
ABBG-00170-V01.01-EN 5		SUPPLEMENTED BY PSR-0005-ED2-EN-2016 03 29		
VERIFIER ACCREDITATION NUMBER		INFORMATION AND REFERENCE DOCUMENTS	5	
VH50		www.pep-ecopassport.org		
DATE OF ISSUE		VALIDITY PERIOD		
10-2023		5 years		
INDEPENDENT VERIFICATION	ON OF THE DECLARATION AND DATA, I	N COMPLIANCE WITH ISO 14025: 2006		
INTERNAL 🗆	EXTERNAL 🗵			
THE PCR REVIEW WAS CON	DUCTED BY A PANEL OF EXPERTS CHA	IRED BY JULIE ORGELET (DDEMAIN)		
PEP ARE COMPLIANT WITH	XP C08-100-1 :2016 OR EN 50693:2019	· · · · · · · · · · · · · · · · · · ·	eco	
THE ELEMENTS OF THE PR	ESENT PEP CANNOT BE COMPARED W	TH ELEMENTS FROM ANOTHER PROGRAM.	PASS	
DOCUMENT IN COMPLIANCENVIRONMENTAL DECLAR		ENTAL LABELS AND DECLARATIONS. TYPE III		
© Converigent 2022 ADD Alle				

© Copyright 2022 ABB. All rights reserved.

EPD Owner	ABB S.p.A. Via Luciano Lama, 33, 20099 Sesto San Giovanni (MI) – Italy www.abb.com
Manufacturer name and address	ABB Xiamen Low Voltage Equipment Co. Ltd. Xiamen, Fujian, China, 361006
Company contacts	EPD_ELSP@in.abb.com
Reference product	XT5 3P IEC Circuit breaker equipped with Ekip trip unit
Description of the product	ABB's new TMDX XT series of Molded Case circuit-breakers, combine the finest protection that has always characterized ABB's molded case circuit breakers with the most precise metering and connectivity functionalities, providing designers, installers and end-users exclusive solutions for their daily needs. Suitable for applications from 160 A to 1600 A, the TMDX XT offers exceptional breaking capacity for all voltages and applications.
	The functional unit to this study is a single circuit breaker (including its pack- aging and accessories), to protect during 20 years the installation against overloads and short-circuits in circuit with assigned voltage U and rated cur- rent In. This protection is ensured in accordance with the following parameters
Functional unit	XT5 160 N/S/H/L/V - 3P IEC Rated voltage [V]: 690 Rated current [A]: 400/630 Rated breaking capacity [kA]: 200 Number of poles: 3/4 Tripping Curve: L, S, I, G
Other products covered	XT5 Fixed Circuit Breakers of types N/S/H/L/V/X (IEC type covered by this study) and ratings 400A to 630A / 3poles /4poles with electronic trip unit
Reference lifetime	20 years
Product category	Flootrical Flootrapia and UVAC D Draduate
i i oudet category	Electrical, Electronic and HVAC-R Products
Use Scenario	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix
	The use phase has been modeled based on the sales mix data (2022), and the
Use Scenario Geographical	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [Global] Assembly: [China] Distribution / Use: [Global] specific sales mix
Use Scenario Geographical representativeness Technological representa-	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of
Use Scenario Geographical representativeness Technological representa- tiveness	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT5 circuit breaker This study is based on the LCA study described in the LCA report
Use Scenario Geographical representativeness Technological representa- tiveness LCA Study	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT5 circuit breaker This study is based on the LCA study described in the LCA report 2TFP000002A1001
Use Scenario Geographical representativeness Technological representa- tiveness LCA Study EPD type	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT5 circuit breaker This study is based on the LCA study described in the LCA report 2TFP00002A1001 Products family declaration
Use Scenario Geographical representativeness Technological representa- tiveness LCA Study EPD type EPD scope Year of reported primary	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT5 circuit breaker This study is based on the LCA study described in the LCA report 2TFP00002A1001 Products family declaration "Cradle to grave"
Use Scenario Geographical representativeness Technological representa- tiveness LCA Study EPD type EPD scope Year of reported primary data	The use phase has been modeled based on the sales mix data (2022), and the corresponding low voltage electricity countries mix Raw materials & Manufacturing: [Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global] Materials and processes data are specific for the production of XT5 circuit breaker This study is based on the LCA study described in the LCA report 2TFP00002A1001 Products family declaration "Cradle to grave" 2022

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	2/17
© Copyright 202	2 ABB. All rights reserved.					

Contents

ABB Purpose & Embedding Sustainability
General Information
Constituent Materials
LCA background information7Functional unit and Reference Flow7System boundaries and life cycle stages7Temporal and geographical boundaries8Boundaries in the life cycle8Data quality8Environmental impact indicators8Allocation rules8Limitations and simplifications9Energy Models9
Inventory analysis
Environmental impacts
Additional environmental information16
References

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	3/17
© Copyright 2022 A	BB. All rights reserved.	·				

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 105 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control. ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

Located in Xiang'an Torch Industrial Park of Xiamen, ABB Xiamen Hub, with an investment of 2 billion yuan (approximate \$300 million) and covering an area of ~ 430000 square meters, officially came into service on Nov. 2018. It integrated eight ABB companies in Xiamen to create smarter production workshop and workplace with higher efficiency through optimized resource allocation and unified management. ABB in Xiamen, with nearly 3,500 employees in total, has a full range of businesses including R&D, manufacturing, engineering, sales and services, as well as ABB China's supply chain management and corporate functions.

The ABB Xiamen Hub is ABB's biggest manufacturing centre for middle & low voltage switchgears and air circuit breakers. With powerful R&D and innovation capability, it is home to:

- One of ABB's largest R&D centres for NeoGear and MNS low-voltage systems
- ABB's first digitally connected remote service centre in China.
- ABB Technology Experience Centre covering full ABB solution & focusing on user experience.

As a modernized large industrial park, ABB Xiamen Hub widely implements environment friendly materials, energy - saving technique and intelligent solutions. They include BMS system for centralized control and monitoring of equipment, PMCS solution for comprehensive management of energy consumption, i-Bus® intelligent building control system for lighting control, rainwater recovery system, and electric vehicle charging facility. With all these solutions, ABB Xiamen Hub has set an example for building a green, low - carbon and intelligent industrial park.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	4/17
© Copyright 202	22 ABB. All rights reserved.	·				

XT product cluster

ABB's new TMDX XT series of Molded Case circuit-breakers, combine the finest protection that has always characterized ABB's molded case circuit breakers with the most precise metering and connectivity functionalities, providing designers, installers and end-users exclusive solutions for their daily needs. Suitable for applications from 160 A to 1600 A, the TMDX XT offers exceptional breaking capacity for all voltages and applications. Combined with high-precision electronic relays of the smallest sizes, the new series protects equipment investments and ensures uninterrupted operation and high availability. Product cluster XT5 analyzed in this LCA includes IEC type Circuit breakers.

XT5

Circuit breaker	ХТ5 Екір Туре
Rated voltage U [V]	690
Rated current In [A]	400/630
Rated short circuit breaking cur- rent Icu [kA]	200
Number of poles	3/4

Table 1: Technical characteristics of IEC circuit breakers (Refer Technical catalogue for complete details).

Official declarations LB-DT 17-21D [13] and 1SDL000282R1265 [14] states compliance of ABB molded case circuit breakers and air circuit breakers respectively to RoHS II and REACH regulations; annex 1SDL000571R0 [15] provides exemptions considered for RoHS II while annex 1SDL000572R0 [16] lists REACH substances present in a concentration above 0,1% adding reference to products where involved parts are mounted.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	5/17
© Copyright 2022	ABB. All rights reserved.					

XT5

Constituent Materials

The representative product is XT5 N/S/H/L 3P IEC Ekip 400A Circuit Breaker which weighs 5.10 kg including its installed accessories, paper documentation and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
	Steel	M-119	1384.0	27.1%
	Cu and Cu Alloys	M-121	839.4	16.4%
Metals	Stainless Steel	M-100	102.1	2.0%
	Precious Metals	M-159	15.6	0.3%
	Aluminium	M-120	2.3	< 0.1%
	Unsaturated Polyester	M-301	1394.2	27.3%
	Polycarbonate	M-254	377.8	7.4%
Plastics	Polyamide	M-258	149.8	2.9%
	Other Polymers	N/A	70.6	2.7%
	Polyethylene	M-251	137.8	1.4%
Others	Paper/Cardboard	M-341	591.2	11.6%
Others	Others	N/A	44.0	0.9%
Total			5108.8	100.0%

Table 2a: Weight of materials XT5 N/S/H/L 3P IEC Ekip 400A

Figure 1: Composition of XT5 N/S/H/L 3P IEC Ekip 400A

Packaging for XT5 weigh the following substance composition.

Material weight (g)	XT5
Corrugated Cardboard	520.0
Polyethylene	10.0

Table 2b: Weight of materials XT5 - Packaging

Along the whole XT5 product cluster a set of different build configurations have been covered by this analysis. Main differences consist of the number of poles, short circuit breaking capacity & Trip unit. The LCA SimaPro model has been fully parametrized to fulfill each different configuration.

LANG. PAGE	. LANG.	DOCUMENT ID.	PEP ECOPASSPORT REG. NUMBER	SECURITY LEVEL	STATUS
en 6/17	002 en	2TFP000002A1005	ABBG-00170-V01.01-EN	Public	Approved
er	002 er	2TFP000002A1005	ABBG-00170-V01.01-EN	Public 2 ABB. All rights reserved.	

Ι	•
	•

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

The functional unit to this study is a single circuit breaker (including its packaging and accessories), to pprotect during 20 years the installation against overloads and short-circuits in circuit with assigned voltage U and rated current In (see tables 1). This protection is ensured in accordance with the following parameters.

Number of poles	3/4
Rated breaking capacity [kA]	200
Tripping Curve	L, S, I, G

The Reference Flow of the study is a single circuit breaker (including its packaging and accessories) with mass described in table 2a.

System boundaries and life cycle stages

The life cycle of the Low Voltage Circuit Breaker, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semi-finished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems.

Manufacturing	Distribution	Installa- tion	Use	End-of-Life (EoL)
Acquisition of raw materials Transport to manufacturing site Components/parts manufacturing Assembly Packaging EoL treatment of generated waste	Transport to distribu- tor/logistic center Transport to place of use	Installation EoL treat- ment of generated waste (packaging)	Usage Mainte- nance	Deinstalla- tion Collection and transport EoL treat- ment

Table 3: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	7/17		
© Copyright 202	© Copyright 2022 ABB. All rights reserved.							

Temporal and geographical boundaries

The ABB component suppliers are sourced all over the world. All primary data collected are from 2021, which is a representative production year. Secondary data are also representative for this year, as provided by ecoinvent [6].

The selected ecoinvent [6] processes in the LCA model have a global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to "PCR-ed4-EN-2021 09 06" and EN 50693 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR-ed4-EN-2021 09 06 and the EN 50693:2019 [3] standard establish four indicators for climate change: Climate change (total) which includes all greenhouse gases; Climate change (fossil fuels); Climate change (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; Climate change (land use) - land use and land use transformation. Other indicators as per the PCR[1].

Allocation rules

An allocation key is used for consumptions related to the manufacturing process in the production site, as well for company waste. Since the factory produces several products (different ACB and MCCB products) only a part of the environmental impact has been allocated to the XT5 production line. Allocation coefficients are based on the XT5 line's occupancy area for electricity, The total number of operators was considered for water consumption. All these flows have been allocated and divided by the total number of XT5 circuit breakers produced in 2022.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	8/17	
© Copyright 2022 ABB. All rights reserved.							

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km as per the PCR. This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Application of grease lubricant on the circuit breakers operating mechanism has been excluded since it is negligible. Surface treatments like galvanizing, tin and silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model. Specific phosphate surface treatment, Stearate coating have been excluded by operational choice. Scraps for metal working and plastic processes are included when already defined in ecoinvent[6].

Printed circuit boards (PCB) have been modelled with a representative cluster dataset including: every single component, the unpopulated board as well as the surface mounting technology (SMD) process. For some components with no equivalent on ecoinvent database[6], the dataset "Electronic component, passive, unspecified {GLO}| market for | Cut-off, S" was used.

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material extraction and processing	A1-A2	Electricity, {GLO} market group for Cut-off Electricity, {GLO} market group for Cut-off	Based on materials and supplier's locations
Manufacturing	A3	Electricity, {GLO} market group for Cut-off	Specific Energy model for ABB Xiamen manufacturing plant, 100% renewable
Installation (Packaging EoL)	A5	Electricity, [country]x market for Cut- off, S **	Low voltage, based on 2022 country sales mix
Use Stage	B1	Electricity, {GLO} market group for Cut-off	
EoL	C1-C4	Electricity, {GLO} market group for Cut-off	

Energy Models

Table 4: Energy models used in each LCA stage

** Please refer the use phase for further description

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	9/17		
© Copyright 2022 ABB. All rights reserved.								

<
\blacksquare

Inventory analysis

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP software were used. They are a list of all the components and assemblies that constitute the finished product, organized by level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area and other weight data, taken from technical drawings. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Searates).

All primary data collected from ABB are from 2022, which was a representative production year. The ecoinvent cut-off by classification system processes [6] are used to represent the LCA model

Due to the large amounts of components in the Circuit Breaker, raw material inputs have been modelled with data from ecoinvent[6] representing either a European [RER] or Global [RoW] market coverage based on the supplier's location. These datasets are assumed to be representative.

Manufacturing stage

The Circuit Breakers are composed of a multitude of components, all of which are made from of numerous materials. Most of the inputs to the products' manufacturing stage are already produced component parts.

All the circuit breaker's components have been modelled according to their specific raw materials and manufacturing processes.

The single use packaging as well as paper documentation are also included in the analysis in the manufacturing stage. ABB receives packaging components from outside suppliers and packages the circuit breakers before shipping them.

Most of the inputs to the products' manufacturing stage are already produced component parts from the supply chain. In the ABB manufacturing plant, the different components and subassemblies are assembled into the circuit breaker. All the semi-finished and ancillary products are produced by ABB's suppliers

The entire supplier's network has been modelled with the calculation of each transportation stage, from the first manufacturing supplier to the next.

All the distances from the last subassembly suppliers' factories to the ABB manufacturing facility have been calculated.

In the ABB factory, the different components and subassemblies are assembled into the circuit breaker. All the semi-finished and ancillary products are produced by ABB's suppliers.

The energy mix used for the production phase is representative for ABB production site and includes renewable energy only.

The complete energy mix has been modeled considering the report on energy origins provided to ABB for the year 2022.

	22 ABB. All rights reserved.			1	1	1.2.
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	10/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific 2022 sales mix data for XT5 product cluster (SAP ERP sales data as a source).

An additional 10% distance by road has been considered to cover the last distribution stage to the end customer (usage location).

Figure 2: Distribution methodology.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the Low Voltage Circuit Breaker.

All the components needed to install the product have been included in the analysis.

For the disposal of the packaging after installation of the circuit breaker at the end of its life, a transport distance of 1000 km (according to PCR [1]) was assumed.

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest Eurostat data (EU-27) available.

Use

Use and maintenance are modelled according to the PCR [1].

During the use phase, circuit breakers dissipate some electricity due to power losses. They are calculated according to the data provided in the catalogue of the circuit breaker and following the PCR [1] & PSR [2] rules:

Parameters		
lu	[A]	400
lu	[%]	50
h/year	[h]	8760
RSL	[years]	20
Time operating coefficient	[%]	30

Table 5: Use phase parameters

The formula for the calculation of the electricity consumed is shown below and it is described as follows, where P_{use} is the power consumed by the switch at a given value of current:

$$E_{use} [kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000}$$

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	11/17
© Copyright 2022 ABB. All rights reserved.						

The above calculations have been performed according to the number of poles (3) on which relevant current flows during use phase.

The Energy model used for this phase was built based on the 2022 actual sales mix data for the entire XT5 product range (SAP ERP sales data as a source). This approach has been taken since this list of countries is the most representative also for the other products listed in the extrapolation tables.

From Ecoinvent [6] database, the low voltage electricity country mix for each country(x) has been selected with its respective percentage on the total sales mix (Electricity, low voltage [country]x | market for | Cut-off, S).

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to PCR [1] and IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9].

Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]).

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	12/17	
© Copyright 2022 ABB. All rights reserved.							

Environmental impacts

XT5 Ekip

₽

The following table show the environmental impact indicators of the life cycle of a XT5 N/S/H/L 3P IEC Ekip 400A Circuit Breaker as indicated by PCR [1] and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different stages (manufacturing, distribution, installation, use and end-of-life).

Impact category	Unit	Total	Manufacturing	Distribution	Installation	Use	End of Life
GWP-total	kg CO2 eq	8.71E+02	3.89E+01	1.07E+00	4.37E-01	8.29E+02	1.48E+00
GWP-fossil	kg CO2 eq	8.67E+02	3.83E+01	1.07E+00	6.73E-02	8.26E+02	1.45E+00
GWP- biogenic	kg CO2 eq	3.70E+00	8.75E-02	5.71E-04	3.70E-01	3.21E+00	3.25E-02
GWP-luluc	kg CO2 eq	5.63E-01	4.58E-01	2.17E-04	2.12E-05	1.05E-01	8.09E-04
ODP	kg CFC11 eq	7.89E-06	3.19E-06	2.44E-07	1.19E-08	4.33E-06	1.17E-07
AP	mol H+ eq	4.91E+00	5.49E-01	5.52E-03	3.18E-04	4.35E+00	6.34E-03
EP- freshwater	kg P eq	2.03E-01	4.87E-02	4.31E-05	4.53E-06	1.54E-01	2.62E-04
EP-marine	kg N eq	9.91E-01	6.66E-02	1.95E-03	1.21E-04	9.18E-01	4.49E-03
EP- terrestrial	mol N eq	1.06E+01	7.33E-01	2.13E-02	1.23E-03	9.79E+00	1.52E-02
POCP	kg NMVOC eq	2.79E+00	2.40E-01	5.89E-03	3.51E-04	2.54E+00	4.41E-03
ADP- minerals & metals	kg Sb eq	2.00E-02	1.75E-02	1.27E-06	1.35E-07	2.49E-03	1.32E-06
ADP-fossil	MJ	7.89E+03	5.68E+02	1.57E+01	8.14E-01	7.29E+03	1.34E+01
WDP	m3	1.03E+02	1.76E+01	3.53E-02	1.16E-02	8.53E+01	1.12E-01
PENRE	MJ	7.89E+03	5.68E+02	1.57E+01	8.15E-01	7.29E+03	1.34E+01
PENRM	MJ	8.10E+02	6.06E+01	1.10E-01	1.06E-02	7.48E+02	9.21E-01
PENRT	MJ	1.23E+00	1.23E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	2.56E+00	4.83E-01	1.18E-03	3.88E-04	2.08E+00	4.36E-03
SM	kg	4.71E-03	3.28E-03	4.04E-05	1.99E-06	1.37E-03	1.86E-05
RSF	MJ	7.80E+01	7.65E+00	7.01E-01	7.95E-02	6.74E+01	2.20E+00
NRSF	MJ	6.44E-03	2.07E-03	1.08E-04	5.16E-06	4.19E-03	6.15E-05
FW	m3	4.48E+00	1.41E+00	0.00E+00	2.89E-01	0.00E+00	2.78E+00
HWD	kg	3.44E-01	0.00E+00	0.00E+00	2.37E-01	0.00E+00	1.06E-01
N-HWD	kg	6.43E-05	3.23E-06	6.34E-08	6.35E-09	6.09E-05	1.09E-07
RWD	kg	2.01E+01	6.03E+00	7.21E-02	3.75E-03	1.39E+01	8.14E-02
MfR	kg	2.69E+04	5.48E+03	1.07E+01	1.10E+00	2.14E+04	2.30E+01
MfER	kg	3.36E-07	1.27E-07	2.17E-10	3.82E-11	2.07E-07	1.25E-09
Efp	disease inc.	1.44E-05	5.27E-06	1.37E-08	1.55E-09	9.08E-06	7.61E-08
IrHH	kBq U-235 eq	2.00E+03	3.37E+02	9.54E+00	8.80E-01	1.64E+03	1.09E+01
ETX FW	CTUe	2.96E+00	5.53E-01	6.67E-04	6.76E-05	2.39E+00	1.06E-02
HTX CE	CTUh	3.54E-07	1.45E-07	2.17E-10	3.82E-11	2.07E-07	1.39E-09
HTX N-CE	CTUh	1.85E-05	9.30E-06	1.37E-08	1.55E-09	9.08E-06	8.52E-08

Table 6: Impact indicators for XT5 N/S/H/L 3P IEC Ekip 400A

© Copyright 202	2 ABB. All rights reserved.					
Approved Public		ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	13/17
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

	Ir	npact category	Unit	XT5 N/S/H/L 3P IEC Ekip
		Carbon content of the		400A 3.03E-02
	Biogenic C	product arbon content of the as-	kg	
		ciated packaging	kg	9.41E-02
Environi	mental im	Table 7: Invent	ory flow other indica	ators
GWP-tota		Global Warming Poten	tial total (Climate	change)
GWP-fos	÷	Global Warming Poten		
GWP-biog GWP-lulu	•	Global Warming Poten Global Warming Poten	•	and use change
ODP		Depletion potential of	the stratospheric	ozone layer
AP		Acidification potential		
EP-fresh	water	Eutrophication potent	ial - freshwater co	mpartment
EP-marin	ie	Eutrophication potent marine end compartme	ent	3
EP-terres	strial	Eutrophication potent Formation potential of		
ADP-m&r	n	Abiotic Depletion for n		
ADP-foss	sil	Abiotic Depletion for for	ossil resources po	tential, WDP
WDP		Water deprivation pote	ential.	
Resourc	e use indi	icators		
PERE				ling renewable primary en-
PERM		0,		rces used as raw material
PERT		Total use of renewable and primary energy res		resources (primary energy aw materials)
PENRE		Use of non-renewable primary energy resour		xcluding non-renewable naterial
PNERM		Use of non-renewable terial	e primary energy re	esources used as raw ma-
PENRT		Total use of non-renew ergy and primary energy		rgy resources (primary en- as raw materials)
Seconda	ary mater	ials, water and energ	y resources	
SM	5	Use of secondary mat	erials	
RSF		Use of renewable seco	•	
NRSF		Use of non-renewable	-	
FW		FW: Net use of fresh w	vater	
Waste c HWD	ategory ii	ndicators Hazardous waste dispe	heed	
N-HWD		Non-hazardous waste		
RWD		Radioactive waste disp	•	
Output f	low indica	ators		
MfR		Materials for recycling		
MfER		Materials for energy rec	covery	
			-	

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	14/17			
© Copyright 2022 ABB. All rights reserved.									

Other indicators

Efp	Emissions of Fine particles
IrHH	Ionizing radiation, human health
ETX FW	Ecotoxicity, freshwater
HTX CE	Human toxicity, carcinogenic effects
HTX N-CE	Human toxicity, non-carcinogenic effects
IrLS	Impact related to Land use / soil quality

Extrapolation for Homogeneous environmental family

This LCA covers different build configurations other than the representative products from the IEC type. All the analyzed configurations have the same main functionality, product standards and manufacturing technology.

The different life cycle stages can be extrapolated to other products of the same homogeneous environmental family by applying a rule of proportionality to the parameters in the following tables, divided by different life cycle stages

XT5 Extrapolation:

IEC/UL	3P/4P	Rating(A)	Trip Unit	Breaking Capacity	GWP-total	GWP-fossil	GWP- biogenic	GWP-Iuluc	ODP	AP	EP- freshwater	EP-marine	EP-terrestrial	POCP	ADP-m&m	ADP-fossil	WDP
	3	400	Ekip	N-S-H-L	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	4	400	Ekip	N-S-H-L	1.27	1.27	2.46	1.31	1.29	1.28	1.30	1.27	1.28	1.28	1.31	1.24	1.26
	3	630	Ekip	N-S-H-L	0.99	0.99	1.48	0.99	1.00	1.30	1.21	1.05	1.08	1.08	1.14	0.99	1.16
IEC	4	630	Ekip	N-S-H-L	1.27	1.26	3.33	1.30	1.28	1.69	1.57	1.34	1.39	1.39	1.49	1.23	1.48
	3	400-630	Ekip	V/X	1.01	1.00	1.46	1.00	0.99	1.07	1.01	0.99	0.98	1.00	0.94	1.00	1.05
	4	400-630	Ekip	V/X	1.28	1.28	3.31	1.32	1.28	1.37	1.31	1.26	1.27	1.29	1.23	1.25	1.33

XT5 Ekip Extrapolation:

Table 8: Manufacturing phase Extrapolation factors for XT5 Ekip Reference product: XT5 N/S/H/L 3P IEC Ekip 400A

IEC/UL	3P/4P	Rating(A)	Trip Unit	Breaking Capacity	LCA Phase	AII
	3	400	Ekip	N-S-H-L		1.00
	4	400	Ekip	N-S-H-L		1.29
IEC	3	630	Ekip	N-S-H-L	Distribution	1.06
IEC	4	630	Ekip	N-S-H-L	DISTINUTION	1.37
	3	400-630	Ekip	V/X		0.94
	4	400-630	Ekip	V/X		1.26

Table 9: Distribution phase Extrapolation factors for XT5 Ekip Reference product: XT5 N/S/H/L 3P IEC Ekip 400A

LCA Phase: Installation

Installation phase impacts are common across all variants of the breaker.

SECURITY L	LEVEL PEP ECOPASSPORT REG. N	NUMBER DOCUMENT ID.	REV.	LANG. F	PAGE
ed Public	ABBG-00170-V01.01-E	EN 2TFP000002A1	1005 A.002	en ´	15/17
ight 2022 ABB. All rights		EN 21FP000002A	1005 A.002	en	15/1

Туре	In [A]	LCA Phase	Factor
	250		0.42
	320		0.61
IEC	400	Use	1.00
	500		1.49
	630		2.37

Table 10: Use phase Extrapolation factors for XT5 Ekip Reference product: XT5 N/S/H/L 3P IEC Ekip 400A

IEC/UL	3P/4P	Rating(A)	Trip Unit	Breaking Capacity	GWP-total	GWP-fossil	GWP- biogenic	GWP-Iuluc	ODP	AP	EP- freshwater	EP-marine	EP- terrestrial	POCP	ADP-m&m	ADP-fossil	WDP
	3	400	Ekip	N-S-H-L	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	4	400	Ekip	N-S-H-L	1.31	1.31	1.14	1.33	1.32	1.33	1.33	1.32	1.32	1.32	1.32	1.32	1.32
IEC	3	630	Ekip	N-S-H-L	1.21	1.21	1.06	1.34	1.13	1.31	1.38	1.07	1.22	1.22	1.15	1.25	1.25
ILC	4	630	Ekip	N-S-H-L	1.59	1.59	1.22	1.79	1.50	1.74	1.84	1.42	1.63	1.62	1.53	1.66	1.66
	3	400-630	Ekip	V/X	1.06	1.06	0.97	1.09	1.06	1.09	1.10	1.02	1.08	1.07	1.06	1.08	1.07
	4	400-630	Ekip	V/X	1.39	1.40	1.10	1.45	1.41	1.45	1.46	1.36	1.43	1.43	1.41	1.43	1.42

Table 11: End of Life phase Extrapolation factors for XT5 Ekip Reference product: XT5 N/S/H/L 3P IEC Ekip 400A

Additional environmental information

According to the waste treatment scenario calculation in Simapro[7], based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

	XT5 N/S/H/L 3P IEC Ekip 400A
Recyclability potential	62.3%

Table 12: Recyclability potential of XT5 Ekip

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	16/17				
© Copyright 2022	© Copyright 2022 ABB. All rights reserved.									

References

- [1] PCR "PEP-PCR-ed4-EN-2021_09_06" Product Category Rules for Electrical, Electronic and HVAC-R Products (published: 6th September 2021)
- [2] PSR "PSR-0005-ed2-EN-2016 03 29" SPECIFIC RULES FOR Electrical switchgear and control gear Solutions (Circuit breakers)
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006 Environmental management -Life cycle assessment Principles and framework
- [5] ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- [6] ecoinvent v3.8 (2021). ecoinvent database version 3.8 (https://ecoinvent.org/)
- [7] SimaPro Software version 9.3.0.3 PRé Sustainability
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019)
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment Edition 1.0 2012-10
- [10] https://www.ecosystemspa.com/
- [11] LB-DT 17-21D RoHS II (MCCBs and ACBs)
- [12] 1SDL000282R1265 REACH (MCCBs and ACBs)

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			
Approved	Public	ABBG-00170-V01.01-EN	2TFP000002A1005	A.002	en	17/17			
© Copyright 2022 ABB. All rights reserved.									