

ABB i-bus[®] KNX Analogue Input AE/S 4.1.1.3 Product Manual

Power and productivity for a better world[™]

ABB i-bus® KNX Contents

Contents

1	General	3
1.1	Using the product manual	3
1.1.1	Notes	4
1.2	Product and functional overview	5 e
1.2.1	Integration in the I-bus [®] 1001	0
2	Device technology	7
2.1	Technical data	7
2.1.1	Inputs	9
2.2	Resolution and accuracy and tolerances	10
2.2.1	Voltage signals	
2.2.2	Current signals	11
2.2.3	Connection schematics	11 13
2.5	Dimension drawing	15
2.5	Mounting and installation	
2	Commissioning	10
3	Commissioning	19
3.1	Overview	19
3.1.1	Conversion	20
3.1.1.1	Conversion procedure	21
3.2	Parameters	22
3.2.1	Parameter window General with concerture: Tomporature dependent resistance	23 29
3221	Sensor output parameter option: PT100/PT1000 2-cond_technology	20 20
3222	Parameter option Sensor output: PT100/PT1000.3-cond_technology	23
3.2.2.3	Parameter option Sensor output: <i>KT/KTY I-50</i> +150 °CI	
3.2.2.4	Line fault compensation Via cable length:	34
3.2.2.5	Line fault compensation Via cable resistance	35
3.2.2.6	Parameter window a: Output	36
3.2.2.7	Parameter window a: Threshold 1	38
3.2.2.8	Parameter window a: Threshold 1 Output	41
3.2.3	Parameter window a: General with sensor type: Current/voltage/Resistance	42
3232	Parameter window a: Oulput	/4 م/
3233	Parameter window a: Threshold 1 Output	
3.2.4	Parameter window a: General with sensor type: Floating contact scanning	
3.2.4.1	Parameter window a: Output	54
3.2.4.2	Parameter window a: Threshold 1	55
3.2.4.3	Parameter window a: Threshold 1 Output	57
3.2.5	Parameter window Calculation 1 – Calculation type: Compare	58
3.2.6	Parameter window Calculation 1 – Calculation type: Arithmetic	60
3.3	Communication objects	63
3.3.1	Summary of communication objects	63
3.3.2 3.3.3	Communication objects Input a	65
3.3.3	Communication objects Calculation 1	68
3.3.5	Communication objects Calculation 7. 3. and 4.	68
3.3.6	Communication objects General	69
4	Planning and application	71
4.1	Description of the Threshold function	71
Α	Appendix	73
A.1	Scope of delivery	73
A.2	Value table of communication object Status byte - General	74
A.3	Conversion between °C and °F	75
A.4	Order details	76

Page

1 General

It is becoming increasingly important to be able to control complex installations in a user-friendly manner. Sensors are used, for instance, in order to control supply air valves, exhaust air valves and air flow speeds in an air conditioning system. The heating is controlled using an outside temperature sensor. Container levels are scanned in order to obtain information about when the containers need filling. Pipeline temperatures are recorded and evaluated. Sensors to detect the presence of persons in a room are installed in order to optimize the use of energy. Monitoring and security functions rely on the data from sensors.

All of these events play a role when it comes to controlling complex installations in buildings and houses in a convenient and secure manner while minimizing energy consumption.

In making it possible to record and process four independent analogue input signals, this device can help you control your installations using ABB i-bus[®].

1.1 Using the product manual

This manual provides detailed technical information on the function, installation and programming of the ABB i-bus[®] KNX device. The application is explained using examples.

This manual is divided into the following chapters:

Chapter 1 General
Chapter 2 Device technology
Chapter 3 Commissioning
Chapter 4 Planning and application
Chapter A Appendix

1.1.1

Notes

Notes and safety instructions are represented as follows in this manual:

Note

Tips for usage and operation

Examples

Application examples, installation examples, programming examples

Important

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

Attention

These safety instructions are used as soon as there is danger of a malfunction without risk of damage or injury.

<u>Danger</u>

These safety instructions are used if there is a danger to life and limb with inappropriate use.

These safety instructions are used if there is an extreme danger to life with inappropriate use.

1.2 Product and functional overview

The device is a modular installation device with a module width of 4 space units in Pro *M* design for installation in distribution boards. The connection to the ABB i-bus[®] is established using a bus connection terminal on the front side. The assignment of the physical address, as well as the setting of parameters, is carried out with Engineering Tool Software ETS.

- The device enables you to record and process four analogue input signals in accordance with DIN IEC 60381, e.g. 0...1 V, 0...5 V, 0...10 V, 1...10 V, 0...20 mA, 4...20 mA. Furthermore, PT 100 and PT 1000 sensors in 2- and 3-conductor technology, 0...1,000 ohm resistors and a selection of KTY sensors can be connected. It is also possible to adapt the device to user-defined KTY sensors by entering a characteristic curve. Floating contacts can also be connected to the device.
- The processing of the input signals is carried out in the application Threshold measurement 4f.
- The object values can be set for each input separately in the application. The output value can be sent as a 1-bit value, or a 1-, 2- or 4-byte value via the bus.
- Due to the flexibility allowing the measurement curve to be adapted, it is possible to mask out certain areas of the measurement curve or to even offset or correct them. Measured values can be averaged over 1, 4, 16 or 64 measurements using the *Filter* function. The output value is "smoothed" via the mean value. As one measurement is taken every second, the setting for 64 measurements per output means that the output value is sent after about 64 seconds.
- It is possible to set two thresholds per input. The thresholds each have an upper and lower limit which can be set independently. The thresholds themselves can be changed via the bus.
- There are four further calculation objects available. It is thus possible to compare two output values or calculate the arithmetic mean. The options less than, greater than, addition, subtraction and averaging are available.

Important

To ensure that all programmable functions work correctly, be sure to observe the sensor manufacturer's technical data

1.2.1 Integration in the i-bus[®] Tool

The device possesses an interface to the i-bus® Tool.

The i-bus® Tool can be used to change settings on the connected device.

The i-bus® Tool can be downloaded for free from our website (www.abb.com/knx).

ETS is not required for the i-bus[®] Tool. However, Falcon Runtime (version 1.6 or higher and version 1.8 or higher for Windows 7) must be installed to set up a connection between the PC and KNX.

A description of the functions can be found in the online help of the i-bus® Tool.

2

Device technology

The device is used to record analogue data. Four conventional sensors can be connected to the device. The connection to the bus is established via the bus connection terminal on the front of the device. The device is ready for operation after connecting the bus voltage. Additional auxiliary voltage is required. The device is parameterized and programmed using ETS.

Analogue Input AE/S 4.1.1.3

2.1 Technical data

Supply	Bus voltage	2132 V DC	
	Current consumption, bus	< 10 mA	
	Mains voltage Us	85265 V AC, 110240 V DC, 50/60 Hz	
	Power consumption	Max. 11 W at 230 V AC	
	Power consumption, mains	80/40 mA at 115/230 V AC	
	Leakage loss, device	Max. 3 W at 230 V AC	
Auxiliary voltage supply for the sensors	Rated voltage Un	24 VDC	
	Rated current In	300 mA	
Connections	KNX	Via bus connection terminal, screwless	
	Mains voltage	Via screw terminals	
	Sensor supply	Via screw terminals	
	Sensor inputs	Via screw terminals	
	Screw terminals	0.22.5 mm ² fine stranded	
		0.24.0 mm ² single core	
	Tightening torque	Max. 0.6 Nm	
Cable length	Between sensor and device input	Max. 100 m	
Operating and display elements	Programming button/LED - •	For assignment of the physical address	
Protection type	IP 20	To DIN EN 60 529	
Protection class	II	To DIN EN 61 140	
Isolation category	Overvoltage category	III to EN 60 664-1	
	Pollution degree	II to DIN EN 60 664-1	
KNX safety voltage	SELV 24 V DC		

Temperature range	Operation	-5 °C+45 °C
	Storage	-25+55 °C
	Transport	-25+70 °C
Ambient conditions	Maximum air humidity	93 %, no condensation allowed
Design	Modular installation device (MDRC)	Modular installation device, Pro M
	Dimensions	90 x 72 x 64.5 mm (H x W x D)
	Mounting width in space units	4 x 18 mm modules
	Mounting depth	64.5 mm
Mounting	On 35 mm mounting rail	To DIN EN 60 715
Installation position	Any	
Weight	0.27 kg	
Housing/color	Plastic housing, gray	
Approvals	KNX to EN 50 090-1, -2	Certification
CE mark	In accordance with the EMC guideline and low voltage guideline	

2.1.1 Inputs

Rated values	Quantity	4
	Voltage	01 V, 05 V, 010 V, 110 V
	Maximum upper limit	12 V
	Current	020 mA, 420 mA
	Maximum upper limit	25 mA
	Resistance	01,000 ohms
		PT100 2-conductor technology
		PT100 3-conductor technology
		PT1000 2-conductor technology
		PT1000 3-conductor technology
		Choice of KT/KTY 1000/2000, user-defined
	Contact	Floating
	Input resistance for voltage measurement	> 50 Mohms
	Input resistance for current measurement	260 ohms
	Permitted cable length between sensor and device input	Max. 100 m

Device type	Application	Max. number of communication objects	Max. number of group addresses	Max. number of assignments
AE/S 4.1.1.3	Threshold measurement 4f/*	42	100	100

*... = Current version number of the application. Please refer to the software information on our website for this purpose.

Note

ETS and the current version of the device application are required for programming.

The current application can be found with the respective software information for download on the Internet at *www.abb.com/knx*. After import into ETS, the application appears in the *Catalogs* window under *Manufacturers/ABB/Analogue Input, 4-fold-MDRC*.

The device does not support the locking function of a KNX device in ETS. If you use a BCU code to inhibit access to all the project devices, this has no effect on this device. Data can still be read and programmed.

2.2 Resolution and accuracy and tolerances

Please note that the tolerances of the sensors which are used will need to be added to the listed values.

With sensors based on resistance measurement, it is also necessary to consider the feeder cable errors.

In the supplied state of the device, the stated accuracies will not be initially achieved. After initial commissioning, the device performs an autonomous calibration of the analogue measurement circuit. This calibration takes about an hour and is performed in the background. It is undertaken regardless of whether or not the device is parameterized and is independent of the connected sensors. The normal function of the device is not affected. After calibration has been completed, the calibration values which have been determined will be stored in the non-volatile memory. Thereafter, the device will achieve this level of accuracy every time it is restarted. The ongoing calibration is displayed in the Status byte by a 1 in bit 4.

Important

The Analogue Input has a $U_n = 24$ V DC output voltage to power the sensors. Make sure that the maximum output current is not exceeded.

2.2.1 Voltage signals

Sensor signal	Resolution	Accuracy at 25 °C Tu*1	Accuracy at -5…45 °C Tu*1	Accuracy at -20…70 °C T _u *1	Remark
01 V	200 µV	±0.2 % ±1 mV	±0.5 % ±1 mV	±0.8 % ±1 mV	
05 V	200 µV	±0.2 % ±1 mV	±0.5 % ±1 mV	±0.8 % ±1 mV	
010 V	200 µV	±0.2 % ±1 mV	±0.5 % ±1 mV	±0.8 % ±1 mV	
110 V	200 µV	±0.2 % ±1 mV	±0.5 % ±1 mV	±0.8 % ±1 mV	

 $^{\star 1}$ of current measured value at ambient temperature (T_U)

2.2.2 Current signals

Sensor signal	Resolution	Accuracy at 25 °C T _U * ²	Accuracy at -5…45 °C Tu ^{*2}	Accuracy at -20…70 °C T _u *2	Remark
020 mA	2 µA	±0.2 % ±4 μΑ	±0.5 % ±4 μΑ	±0.8 % ±4 μΑ	
420 mA	2 μΑ	±0.2 % ±4 μΑ	±0.5 % ±4 μΑ	±0.8 % ±4 μΑ	

 $^{\star 2}$ of current measured value at ambient temperature (T_U)

2.2.3 Resistance signals

Sensor signal	Resolutio n	Accuracy at 25 °C Tu* ³	Accuracy at -5…45 °C T _u * ³	Accuracy at -2070 °C T _u *3	Remark
01,000 ohms	0.1 ohm	±1.0 ohm	±1.5 ohms	±2 ohms	
PT100*4	0.01 ohm	±0.15 ohm	±0.2 ohm	±0.25 ohm	0.1 ohm = 0.25 °C
PT1000*4	0.1 ohm	±1.5 ohms	±2.0 ohms	±2.5 ohms	1 ohm = 0.25 °C
KT/KTY 1,000*4	1 ohm	±2.5 ohms	±3.0 ohms	±3.5 ohms	1 ohm = 0.125 °C/at 25 °C
KT/KTY 2,000*4	1 ohm	±5 ohms	±6.0 ohms	±7.0 ohms	1 ohm = 0.064 °C/at 25 °C

 \star3 in addition to current measured value at ambient temperature (T_U)

*4 plus feeder cable and sensor faults

PT100

The PT100 is precise and exchangeable but subject to faults in the feeder cables (cable resistance and heating of the feeder cables). A terminal resistance of just 200 milliohm causes a temperature error of 0.5 °C.

PT1000

The PT1000 responds just like the PT100, but the influences of feeder cable errors are lower by a factor of 10. Use of this sensor is preferred.

KT/KTY

The KT/KTY has a low level of accuracy, can only be exchanged under certain circumstances and can only be used for very simple applications.

Please note that there are different tolerance classes for the sensors in the versions PT100 and PT1000.

The table indicates the individual classes:

Designation	Tolerance			
DIN class A	0.15 + (0.002 x t)			
1/3 DIN class B	0.10 + (0.005 x t)			
1/2 DIN class B	0.15 + (0.005 x t)			
DIN class B	0.30 + (0.005 x t)			
2 DIN class B	0.60 + (0.005 x t)			
5 DIN class B	1.50 + (0.005 x t)			
t = Current temperature				

2.3 Connection schematics

Connecting sensor with an external supply

Connecting a 3-conductor sensor with its own power supply

Connecting a floating contact

2CDC072034F0013

2CDC072036F0013

2CDC072037F0013

Connecting a 4-conductor sensor with its own power supply

2CDC072035F0013

Connecting a 4...20 mA sensor

Connecting a PT100/PT1000 3-conductor temperature sensor

1 Label carrier

2CDC072031F0014

- 2 Programming button == 0
- 3 Programming LED (red)
- 4 Bus connection terminal
- 5 Power supply
- 6 Auxiliary voltage output for sensor supply
- 7 Sensor input

2.4 Dimension drawing

2CDC072039F0013

2.5 Mounting and installation

The device is a modular installation device for quick installation in distribution boards on 35 mm mounting rails to DIN EN 60 715.

The installation position can be selected as required.

The electrical connection is implemented using screw terminals. The connection to the bus is implemented using the supplied bus connection terminal. The terminal assignment is located on the housing.

The device is ready for operation once the mains voltage and the bus voltage have been applied.

Accessibility to the device for the purpose of operation, testing, visual inspection, maintenance and repair must be provided compliant to DIN VDE 0100-520.

Attention

The sensor manufacturer's technical data must be observed for optimum measuring or monitoring values. The same applies to the specifications with regard to equipment for lightning protection.

Commissioning requirement

In order to commission the device, a PC with ETS as well as a connection to the ABB i-bus[®], e.g. via a KNX interface, is required.

The device is ready for operation after connection to the bus voltage. Additional auxiliary voltage is required.

Important

The maximum permissible current of a KNX line must not be exceeded.

During planning and installation ensure that the KNX line is correctly dimensioned.

The device features a maximum current consumption of 12 mA.

Mounting and commissioning may only be carried out by electrical specialists. The appropriate standards, guidelines, regulations and specifications for the appropriate country should be observed when planning and setting up electrical installations and security systems for intrusion and fire detection.

- Protect the device from damp, dirt and damage during transport, storage and operation.
- Only operate the device within the specified technical data!
- The device should only be operated in an enclosed housing (distribution board)!
- The voltage supply to the device must be switched off before mounting work is performed.

All poles must be disconnected when expanding or modifying the electrical connections.

Supplied state

The device is supplied with the physical address 15.15.255. The application is pre-installed. It is therefore only necessary to load group addresses and parameters during commissioning.

The complete application can be reloaded if required. Downloads may take longer after a change of application or a discharge.

Assignment of the physical address

The assignment and programming of the physical address is carried out in ETS.

The device features a *Programming* button **O** for assignment of the physical address. The red *Programming* LED • lights up after the button has been pressed. It goes off as soon as ETS has assigned the physical address or the *Programming* button **O** is pressed again.

Download reaction

Depending on the PC which is used, the progress bar for the download may take up to one and a half minutes to appear, due to the complexity of the device.

Cleaning

The voltage supply to the device must be switched off before cleaning. If devices become dirty, they can be cleaned using a dry cloth or a cloth dampened with a soapy solution. Corrosive agents or solutions should never be used.

Maintenance

The device is maintenance-free. In the event of damage repairs should only be carried out by an authorized person, e.g. during transport and/or storage.

ABB i-bus® KNX Commissioning

3 Commissioning

The *Threshold measurement 4f* application and ETS Engineering Tool Software are used to parameterize the device. The application provides the device with a comprehensive and flexible range of functions. The standard settings allow simple commissioning. The functions can be expanded if required.

3.1 Overview

The following functions can be selected for each of the four inputs:

Sensor type (type of input signal)	All conventional sensors with an output signal of 01 V, 05 V, 010 V, 110 V, 020 mA, 420 mA, 01,000 ohms, 2-conductor PT100s and 2- and 3-conductor PT100s or a range of KT/KTY sensors can be connected. Furthermore, user-defined KTY sensors can be matched to the Analogue Input. Floating contacts also be processed.
Signal correction/ displacement	The sensor signal can be corrected or displaced.
Measuring range	Flexible setting option for the upper and lower measuring limits dependent on the sensor's output signal. The measuring curve can be linearly adapted between the upper and lower measuring limits.
Output value	Flexible setting options for the output value – upper and lower measuring limits dependent on the sensor's output signal.
Data types of the output value	The output value can be sent as a 1-bit value [0/1], 1-byte value [0+255], 1-byte value [-128+127], 2-byte value [0+65,535], 2-byte value [-32,768+32,767], 2-byte value (floating point) or 4-byte value (IEEE floating point).
Filtering	The output value is "smoothed" via the mean value. The mean value can be calculated over 1, 4, 16 or 64 measurements. A measurement is taken once per second.
Threshold	Two thresholds can be set, each with an upper and lower limit. The limits can be modified via the bus.
Calculation	There are four calculation objects available. It is thus possible to compare two output values or calculate the arithmetic mean. The options less than, greater than, addition, subtraction and averaging are available.

3.1.1 Conversion

For ABB i-bus[®] KNX devices, it is possible to adopt the parameter settings and group addresses from earlier versions of the application from ETS3.

Furthermore, conversion can be used to transfer the existing parameterization of a device to a different device.

Note

When the term "channels" is used in ETS, it always means inputs and/or outputs. To make the language of ETS generally valid for as many ABB i-bus[®] devices as possible, the word "channels" is used in this document.

The following applications can be fully converted:

• Threshold measurement 2f/1.0b (AE/A 2.1) to Threshold measurement 4f/1.0 (AE/S 4.1.1.3)

Note

If the number of channels on the target device is larger than the number of inputs/outputs of the source device, only the first inputs/outputs of the target device are written with the converted data from the source device. The remaining inputs/outputs retain or are reset to the default values. Default values for newly added parameters are set after conversion.

Inputs a and b of the AE/A 2.1 Analogue Input's application become the same inputs in the AE/S 4.1.1.3's application. Inputs c and d of the AE/S 4.1.1.3 remain unused.

The parameters *Mains frequency* and *Enable communication object "In operation", 1 bit* are not available in the AE/A 2.1 and after conversion they retain the standard values of the AE/S 4.1.1.3.

ABB i-bus® KNX Commissioning

3.1.1.1 Conversion procedure

- Import the current application into ETS.
- Insert the desired device into your project.
- Perform your parameterizations and program the device.
- Right-click the product and select *Plug-in > Convert* in the context menu.

	Edit Parameters			
	Download		•	
	Unload		•	
	Info		٠	
	Reset Device			
	Compare Device			
	Transfer Parameters and Flags			
	Plug-In		•	Convert
	Unlink			Copy/Exchange channels
*	Add to Favorites		٠	Write config to logfile
	Add to My Products		Þ	
÷	Add		Þ	
х	Delete			
*	Cut	Ctrl + X		
	Сору	Ctrl + C		
Ē	Paste			
Ē	Paste Special	Ctrl + V		
	Paste Extended			
	Properties	Alt + Ente	r	

- Then make the desired settings in the Convert dialog.
- Finally, replace the physical address and delete the old device.

3.2 Parameters

The ETS Engineering Tool Software is used for parameterizing the device.

The application is in the ETS Catalogs window under Manufacturers/ABB/Analogue Input, 4-fold-MDRC.

The following chapter describes the parameters of the device using the parameter windows. Parameter windows are structured dynamically so that further parameters may be enabled depending on the parameterization and the function.

The default values of the parameters are underlined, e.g.:

Options: Yes No

ABB i-bus® KNX Commissioning

3.2.1 Parameter window General

Higher level parameters can be set in the General parameter window.

General	Consideration and the second second second	- N-t-
a: General	data for the parameter settings.	<- Note
b: General		
c: General		
d: General	Reaction on bus voltage recovery	No reaction 🗸
Calculation 1	(when mains voltage is applied)	
Calculation 2		
Calculation 3	Reaction on programming/ETS reset	No reaction
Calculation 4	(when mains voltage is applied)	· · · · · · · · · · · · · · · · · · ·
	Send delay for above parameters	10 s 🔹
	Mains frequency	50 Hz 🔹
	Rate of telegrams	1 telegram/second 🔹
	Enable communication object "In operation", 1-bit	No
	Designation, Input a	<text></text>
	(40 characters)	
	Designation, Input b	<text></text>
	(40 characters)	
	Designation, Input c	<text></text>
	(40 characters)	
	Designation, Input d	<text></text>
	(40 characters)	

Consider the sensor manufacturer for the parameter settings.

Important

The specifications of the sensor manufacturer must be observed to ensure perfect functioning of the Analogue Input. Furthermore, the manufacturer's specifications should be consulted for the parameter settings.

On the connected sensors, ensure, for example, that the upper limits of 12 V with voltage signals and 25 mA with current signals are not exceeded.

ABB i-bus® KNX Commissioning

Reaction on bus voltage recovery (when mains voltage is applied)

Reaction on programming/ETS reset (when mains voltage is applied)

Options:

No reaction Send object values immediately Send object values with a delay

The parameters are used to set the reaction on bus voltage recovery/reaction on programming/ETS reset when mains voltage is applied.

- No reaction: No object values are sent. After bus voltage recovery, programming or ETS reset, none
 of the object values (output values, thresholds, calculation values, measured value out of range, In
 operation and Status byte) are sent on the bus, i.e. a visualization is not refreshed. The object values
 are sent at the earliest after the parameterized settings are sent on the bus.
- Send object values immediately: The object values are sent immediately. After bus voltage recovery, programming or ETS reset, the individual object values (output values, thresholds, calculation values, measured value out of range, In operation and Status byte) are sent on the bus. This ensures, for example, that visualizations display a current process map.
- Send object values with a delay: The object values are sent after a delay. After bus voltage recovery, programming or ETS reset, the individual object values (output values, thresholds, calculation values, measured value out of range, In operation and Status byte) are sent on the bus after a delay. Thus the process map is sent after a delay, e.g. to control the bus load in a KNX system.

The Send delay is set separately and applies to both the parameters Reaction on bus voltage recovery and Reaction on programming/ETS reset.

How does the device react if bus voltage recovers before the mains voltage?

As the circuit is supplied with power from the mains voltage, it cannot react to the bus voltage recovery. The circuit cannot be activated.

If the mains voltage recovers and the bus voltage is already available then the reaction after mains voltage recovery is undertaken.

How does the device react if mains voltage recovers before the bus voltage?

Case 1: Option Send object values immediately

The telegrams are sent immediately. As the bus voltage is still absent, no telegrams are visible. Should the bus voltage then recover, the reaction in accordance with the setting of the option for bus voltage recovery is applied.

Case 2: Option Send object values with a delay

The reaction depends on the option for bus voltage recovery.

Option No reaction

The ongoing send delay is not interrupted.

Option Send object values immediately

The ongoing send delay is interrupted and sending is implemented immediately.

Option Send object values with a delay

The ongoing send delay is retriggered. Sending is undertaken after the new send delay time.

How does sending values function?

Generally, the send options of the individual sensors tend to overlap with the options that are possible for mains voltage recovery or programming.

Example

If the temperature sensor is parameterized to send cyclically every 5 seconds, it will do so after mains voltage recovery, regardless of the option selected for mains voltage recovery.

With the options in parameter *Reaction on...*, it is possible after an event (mains voltage recovery, programming and bus voltage recovery) that the complete process map of the sensor (output values and thresholds) is either sent immediately or after a defined send delay. This ensures that all relevant information is guaranteed to be sent at least once after an event (e.g. for use by a visualization system).

What is an ETS reset?

Generally an ETS reset is defined as a reset of the device via the ETS. The ETS reset is triggered in the ETS under the menu item *Commissioning* with the function *Reset device*. This stops and restarts the application.

Send delay for above parameters

Options: 5 s/10 s/20 s/30 s/60 s

The send delay time determines the time between bus voltage recovery, programming/ETS reset and the time from which the telegrams should be sent with a delay. When the device has been started, the following communication objects also send a telegram after the set delay.

- The *In Operation General* communication object sends an In operation telegram with the value 1 or 0 (adjustable).
- The Status byte General communication object sends a Status byte telegram with the current value (state). Each bit is assigned with information.

For further information see: Appendix

Note

The settings in the parameters only have an effect on the parameters *Reaction on bus voltage recovery* and *Reaction on programming/ETS reset*. If the option *No reaction* is set in each of the parameters, the selected send delay has no function.

No telegrams are sent during the send delay in progress in the initialization phase. Value Read telegrams are also answered during the delay time.

Incoming telegrams to the communication object, e.g. *Request output value*, are not considered here. The send delay times should be coordinated to the entire KNX system.

How does the send delay function?

The sensor inputs are evaluated and telegrams are received during the send delay. The received telegrams are processed immediately, and the object values of the outputs change immediately if necessary. However, no telegrams are sent on the bus.

If during the Send delay objects are read via the Value Read telegrams, e.g. by visualization systems, immediately thereafter the corresponding Value Respond telegrams are sent and not just after the Send delay has timed out.

After the Send delay has timed out, all object values to be sent are sent on the bus.

Mains frequency

Options:

<u>50 Hz</u> 60 Hz

This parameter defines the mains frequency.

Rate of telegrams

Options: <u>1/2/3/5/10/20 telegrams/second</u>

To control the bus load, this parameter can be used to limit the rate of telegrams per second.

Example

With the setting 5 telegrams/second a maximum of five telegrams can be sent in a second.

Enable communication object "In operation", 1-bit

Options: <u>No</u> Yes

• Yes: The 1-bit communication object In operation is enabled.

Dependent parameter:

Send Options:

s: Value 0 Value 1

Sending cycle time in s [1...65,535] Options: 1...<u>60</u>...65,535

Here a time interval is set, which the communication object *In operation* uses to cyclically send a telegram.

Note

After bus voltage recovery, the communication object sends its value after the set sending and switching delay time.

Designation, Input a, b, c, d (40 characters)

Options: < Text >

With this parameter, it is possible to enter a text of up to 40 characters in length for identification in the ETS.

Note

The text field allows you to enter information such as which function is assigned to which input. The text is purely for informative purposes and has no further function.

3.2.2

Parameter window *a: General* with sensor type: *Temperature-dependent resistance*

Setting options for sensor type Temperature-dependent resistance.

The specifications below also apply to parameter windows b...d: General.

General		N
a: General	Use input	Yes
a: Output	Sensor type	Temperature-dependent resistance
a: Threshold 1		
a: Threshold 1 Output	Sensor output	PT100 2-cond. technology [-50+150 °C] -
a: Threshold 2		
a: Threshold 2 Output		
b: General	Send output value as	2-byte (floating point)
c: General		
d: General	Temp. offset in 0.1 K	0
Calculation 1	[-50+50]	
Calculation 2	Line fault compensation	None 🗸
Calculation 3		
Calculation 4		

Use input

Options: <u>No</u> Yes

The parameter enables input a.

As a result, further parameters and communication objects become visible.

Sensor type

Options:	Current/Voltage/Resistance
	Temperature-dependent resistance
	Floating contact scanning

The Sensor type is set with this parameter.

Selection of option Temperature-dependent resistance.

Dependent parameters:

Sensor output

Options:

: <u>PT100 2-cond. technology [-50...+150 °C]</u> PT1000 2-cond. technology [-50...+150 °C] PT100 3-cond. technology [-50...+150 °C] PT1000 3-cond. technology [-50...+150 °C] KT/KTY [-50...+150 °C]

The Sensor output is set with this parameter. The data can be found in the sensor manufacturer's technical documentation.

3.2.2.1

Sensor output parameter option: PT100/PT1000 2-cond. technology

General		N
a: General	Use input	Yes
a: Output	Sensor type	Temperature-dependent resistance
a: Threshold 1		
a: Threshold 1 Output	Sensor output	PT100 2-cond. technology [-50+150 °C] -
a: Threshold 2		
a: Threshold 2 Output		
b: General	Send output value as	2-byte (floating point)
c: General		
d: General	Temp. offset in 0.1 K	0
Calculation 1	[-50+50]	
Calculation 2	Line fault compensation	None 🗸
Calculation 3		
Calculation 4		

Send output value as

This parameter is fixed to 2-byte (floating point).

What is the output value?

The Analogue Input records a sensor measured value, converts it according to the set parameters and sends it on the bus. This sent value is designated as the output value.

Temp. offset in 0.1 K [-50...+50]

Options: -50...<u>0</u>...+50

A maximum offset of ± 5 K (Kelvin) can be added to the recorded temperature with this parameter.

Line fault compensation

Options: <u>None</u> Via cable length Via cable resistance

This parameter is used for setting the line fault compensation.

Selection of options V*ia cable length* and V*ia cable resistance*: For a description, see Chapter Line fault compensation Via cable length, p. 34 and Chapter Line fault compensation Via cable resistance, p. 35.

3.2.2.2 Parameter option Sensor output: *PT100/PT1000 3-cond. technology*

General		N
a: General	Use input	Yes
a: Output	Sensor type	Temperature-dependent resistance
a: Threshold 1	Senser type	
a: Threshold 1 Output	Sensor output	PT100 3-cond. technology [-50+150 °C] -
a: Threshold 2		
a: Threshold 2 Output		
b: General	Send output value as	2-byte (floating point)
c: General		
d: General	Temp. offset in 0.1 K	0
Calculation 1	[-50+50]	
Calculation 2	Input b must also be configured as	<- Note
Calculation 3	3-conductor measurement	
Calculation 4	Input b is used for	<- Note
	line fault compensation	01707

Note

For a description of the parameters, see Chapter <u>Sensor output parameter option: PT100/PT1000</u> <u>2-cond. technology</u>, p. 29.

On selecting a 3-conductor PT100 or PT1000 the following information also appears:

Input b must also be configured as 3-conductor measurement

Input b is used for line fault compensation

ABB i-bus® KNX Commissioning

3-conductor connection:

Note

With the 3-conductor connection the following applies:

- Input a or c always measures the measuring resistor.
- Input b or d always measures the cable resistance.

When a 3-conductor connection is selected, inputs b and d are visible in the communication objects. If a group address is linked to these inputs, then the measured cable resistance is transmitted. It should be noted that the temperature value must be converted with the DPT 9.001, so that the resistance value remains intact.

3.2.2.3 Parameter option Sensor output: KT/KTY [-50...+150 °C]

General		1
a: General	Use input	Yes
a: Output	Sensor type	Temperature-dependent resistance 🔹
a: Threshold 1		
a: Threshold 1 Output	Sensor output	KT/KTY [-50+150 ℃]
a: Threshold 2		
a: Threshold 2 Output	Manufacturer designation	KT 100 / 110 / 130
b: General	Send output value as	2 hate (Perstine aniat)
c: General		2-byte (libating point)
d: General	Temp. offset in 0.1 K	0
Calculation 1	[-50+50]	
Calculation 2	11 A. 16	News
Calculation 3	Line fault compensation	Ivone •
Calculation 4		

Manufacturer designation

<u>KT 100 / 110 / 130</u> Options: KT 210 / 230 KTY 10-5 / 11-5 / 13-5 KTY 10-6 / 10-62 / 11-6 / 13-6 / 16-6 / 19-6 KTY 10-7 / 11-7 / 13-7 KTY 21-5 / 23-5 KTY 21-6 / 23-6 KTY 21-7 / 23-7 KTY 81-110 / 81-120 / 81-150 KTY 82-110 / 82-120 / 82-150 KTY 81-121 / 82-121 KTY 81-122 / 82-122 KTY 81-151 / 82-151 KTY 81-152 / 82-152 KTY 81-210 / 81-220 / 81-250 KTY 82-210 / 82-220 / 82-250 KTY 81-221 / 82-221 KTY 81-222 / 82-222 KTY 81-251 / 82-251 KTY 81-252 / 82-252 KTY 83-110 / 83-120 / 83-150 KTY 83-121 KTY 83-122 KTY 83-151 User-defined

For selection of a predefined KTY sensor

Note

If a KTY sensor which is not in the list is used, the option *User-defined* can be used to enter its characteristic, see following page.

User-defined

General	Ure input	Vec	-
a: General	Use input		_
a: Output	Sensor type	Temperature-dependent resistance	•
a: Threshold 1			5
a: Inreshold 1 Output	Sensor output	KI/KIY [-50+150 °C]	•
a: Threshold 2 Output	Manufacturer designation	User-defined	-
b: General			
c: General	The following ohmic values must	<- Note	
d: General	rise to higher temperatures		
Calculation 1	Resistance in ohms at -50 °C	1030	-
Calculation 2			_
Calculation 3	Resistance in ohms at -30 °C	1247	-
Calculation 4	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1405	-
	Resistance in onms at -10 °C	1495	-
	Resistance in ohms at +10 °C	1772	-
			-
	Resistance in ohms at +30 °C	2080	
	Resistance in ohms at +50 °C	2417	-
			-
	Resistance in ohms at +70 °C	2785	-
	Resistance in ohms at +90 °C	3182	-
	Resistance in onins at 450 C	5102	-
	Resistance in ohms at +110 °C	3607	
	Resistance in ohms at +130 °C	4008	=
			_
	Resistance in ohms at +150 °C	4280	-
	Send output value as	2-byte (floating point)	
	Schu Gatput Value as	- oya (notating point)	
	Temp. offset in 0.1 K	0	-
	[-50+50]		
	Line fault compensation	None	•
	197	· · · · · · · · · · · · · · · · · · ·	

The following ohmic values must rise to higher temperatures

<- Note

To ensure correct functioning of the Analogue Input with respect to the user-defined entries, the ohm (resistance) values as visible for the preset values must be in ascending order.

An incorrect entry can lead to unrealistic output values!

Resistance in ohms at -50...+150 °C

Options: 0...<u>1,030</u>...<u>4,280</u>...5,600

A resistance characteristic can be entered via these 11 parameters. The data can be found in the sensor manufacturer's technical documentation.

Note

The description of the parameters *Send output value as, Temperature offset* and *Line fault compensation* can be found in <u>Parameter window a: General with sensor type: Temperature-dependent resistance</u>.

3.2.2.4 Line fault compensation *Via cable length*

General		(V
a: General	Use input	Yes 👻
a: Output	Sensor type	Temperature-dependent resistance 🔹
a: Threshold 1		
a: Threshold 1 Output	Sensor output	PT1000 2-cond. technology [-50+150 °C] -
a: Threshold 2		
a: Threshold 2 Output		
b: General	Send output value as	2-byte (floating point)
c: General		
d: General	Temp. offset in 0.1 K	0
Calculation 1	[-50+50]	
Calculation 2	Line fault compensation	Via cable length 🔹
Calculation 3		
Calculation 4	Cable length, single distance [130 m]	10
	Cross-section of conductor	100
	Value * 0.01 mm ² [1150]	
	Line fault comp. via cable length	<- Note
	suitable only f. copper conductors	

Cable length, single distance

[1...30 m]

Options: 1...<u>10</u>...30

For setting the single cable length of the connected temperature sensor.

Important

The maximum cable length permitted between the sensor and device input is 30 m.

Cross-section of conductor

Value * 0.01 mm² [1...150]

Options: 1...<u>100</u>...150 (150 = 1.5 mm²)

The cross-section of the conductor to which the temperature sensor is connected is entered using this parameter.

Important

Line fault compensation via cable length is only suitable for copper conductors.
3.2.2.5 Line fault compensation Via cable resistance

General		[v]
a: General	Use input	Yes 🔻
a: Output	Sensor type	Temperature-dependent resistance
a: Threshold 1		
a: Threshold 1 Output	Sensor output	PT1000 2-cond. technology [-50+150 °C] -
a: Threshold 2		
a: Threshold 2 Output		
b: General	Send output value as	2-byte (floating point)
c: General		
d: General	Temp. offset in 0.1 K	0
Calculation 1	[-50+50]	
Calculation 2	Line fault compensation	Via cable resistance 🔹
Calculation 3	· · · · · · · · · · · · · · · · · · ·	
Calculation 4	Cable resistance in milliohms	500
	(total of forw. and ret. conduct.)	

Cable resistance in milliohms (total of forw. and ret. conduct.)

Options: 0...<u>500</u>...10,000

Using this parameter the level of cable resistance of the connected temperature sensor is set.

Important

In order to correctly measure the cable resistance, the conductors must be shorted together at the end of the cable and should not be connected to the Analogue Input.

3.2.2.6 Parameter window *a: Output*

This parameter window is enabled if the parameter *Use input* has been set to Yes in <u>Parameter window</u> <u>a: General with sensor type: Temperature-dependent resistance</u>, p. 28.

General a: General	Scan rate	<- Note	
a: Output	One measurement per second		
a: Threshold 1	Filter	Inactive	•
a: Threshold 1 Output			
a: Threshold 2			
a: Threshold 2 Output	Send output value	Cyclically	•
b: General		-	
c: General	Output value is sent every	5 s	•
d: General			
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Scan rate

The sensor signal of input is measured once per second.

Filter

Options: <u>Inactive</u> Low (mean value over 4 measurements) Medium (mean value over 16 measurements) High (mean value over 64 measurements)

This parameter is used for setting a filter (floating mean value filter). This can be used to set the output value as a mean value using three different options.

- Inactive: Filter is not active
- Low: Mean output value over 4 measurements
- Medium: Mean output value over 16 measurements
- High: Mean output value over 64 measurements

Important

By use of the filter the output value is "smoothed" via the mean value and is available for further processing. The filter thus has immediate effects on the thresholds and calculation values. The higher the degree of the filtering applied, the smoother the result. This means that the changes to the output values become slower.

Example: An erratic change of the sensor signal with the setting *Medium* will take 16 seconds until the output value is through.

Send output value

Options: On request On change <u>Cyclically</u> On change and cyclically

This parameter defines how the output value should be sent.

• On request: The output value is sent on request.

The Request output value - Input a communication object appears.

As soon as a 1 is received at this communication object, the current output value is sent once to the communication object *Output value – Input a*.

- On change: The output value is sent when a change occurs.
- Cyclically: The output value is sent cyclically.
- On change and cyclically: The output value is sent cyclically when a change occurs.

Selection of options On change, Cyclically and On change and cyclically:

Dependent parameters:

Output value is sent every Options: <u>5</u>/10/30 s 1/5/10/30 min 1/6/12/24 h

The interval for cyclical sending is set with this additional parameter.

Output value is sent from a change of [x 0.1 °C] Options: 1...10...200

This parameter defines from which temperature change the output value should be sent.

• 10: The output value is sent after a change of 1 °C.

3.2.2.7 Parameter window a: Threshold 1

The details in the following also apply to a: Threshold 2.

General	Use threshold	Yes	•
a: General			
a: Output	Tolerance band lower limit	-500	<u> </u>
a: Threshold 1	Input in 0.1 °C	300	
a: Threshold 1 Output			
a: Threshold 2	Tolerance band upper limit	1500	-
a: Threshold 2 Output	Input in 0.1 °C		
b: General	Limits modifiable via bus	No	•
c: General			
d: General	Data type of threshold object	1-bit	-
Calculation 1			
Calculation 2	Send if threshold fallen below	Send OFF telegram	•
Calculation 3	Min. duration of the undershoot	None	•
Calculation 4	with defaultion of the undershoot	line	
	Send if threshold exceeded	Send ON telegram	•
	Min. duration of the overshoot	None	•

Use threshold

Options: <u>No</u> Yes

This parameter defines if threshold 1 should be used. If Yes is selected, the communication object *Threshold – Input a Threshold 1* appears.

Tolerance band lower limit Input in 0.1 °C Options: <u>-500</u>...1500

Tolerance band upper limit Input in 0.1 °C

Options: -500...<u>1500</u>

The upper and lower limits of the tolerance band are set via these two parameters.

The entry is made in steps of 0.1 °C, i.e. an entry of 1500 means 150 °C.

For further information see: Appendix

Limits modifiable via bus

Options: <u>No</u> Yes

This parameter specifies whether the limits can be changed via the bus.

Yes: The following communication objects appear:

Modify – Input a Threshold 1 lower limit

Modify - Input a Threshold 1 upper limit.

Important

The value formats of these communication objects are the same as the format set in parameter window *a: General,* under the parameter *Send output value as* (see <u>Parameter window a: General with sensor</u> type: Temperature-dependent resistance, p. 28).

Data type of threshold object

Options: <u>1-bit</u> 1-byte [0...+255]

Selection of option 1-bit:

Dependent parameters:

Send if threshold fallen below

Options:

Send ON telegram Send OFF telegram

Do not send telegram

Send if threshold exceeded

Options:

Do not send telegram <u>Send ON telegram</u> Send OFF telegram

- Do not send telegram: There is no reaction.
- Send ON telegram: A telegram with the value 1 is sent.
- Send OFF telegram: A telegram with the value 0 is sent.

Min. duration of the undershoot

Min. duration of the overshoot

Options: <u>None</u> 5/10/30 s 1/5/10/30 min 1/6/12/24 h

• None: the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegrams are sent.

Selection of option 1-byte [0...+255]:

Dependent parameters:

Send if threshold fallen below [0...+255] Options: 0...255

Send if threshold exceeded [0...+255] Options: 0...<u>255</u>

A value of 0 to 255 can be entered in single steps.

Min. duration of the undershoot

Min. duration of the overshoot

Options:

<u>None</u> 5/10/30 s 1/5/10/30 min 1/6/12/24 h

• None: the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegram is sent.

3.2.2.8 Parameter window *a: Threshold 1 Output*

The details in the following also apply to a: Threshold 2 Output.

General		On all and the liter liter	
a: General	Send threshold object	On change and cyclically	•
a: Output	Send if threshold	30 s	•
a: Threshold 1	fallen below every		
a: Threshold 1 Output		20 -	
a: Threshold 2	Send if threshold	30 s	•
a: Threshold 2 Output	exceeded every		
b: General			
c: General			
d: General			
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Send threshold object

Options:

On change On change and cyclically

This parameter is used to specify the send behavior of the threshold object.

- On change: The threshold object is sent when a change occurs.
- On change and cyclically: The threshold object is sent cyclically when a change occurs. The threshold
 object is sent cyclically until the value falls below or exceeds the other limit.

Dependent parameters:

Send if threshold fallen below every

Send if threshold exceeded every

Options:

5/10/<u>30 s</u> 1/5/10/30 min 1/6/12/24 h

These two parameters are used to define the point to which cyclical sending should take place after an undershoot of the lower limit or an overshoot of the upper limit.

3.2.3

Parameter window *a: General* with sensor type: *Current/Voltage/Resistance*

Setting options with sensor type Current/Voltage/Resistance.

The specifications below also apply to parameter windows b...d: General.

General	Use Sec. 4	Var	
a: General	Use input	Tes	
a: Output	Sensor type	Current/Voltage/Resistance	•
a: Threshold 1			
a: Threshold 1 Output	Sensor output	010 V	•
a: Threshold 2			
a: Threshold 2 Output	Send output value as	1-byte [0+255]	•
b: General	Measuring range definition		
c: General			
d: General	Lower meas. limit in x % of	0	
Calculation 1	meas. range end value		
Calculation 2	Output value to be sent for lower	0	
Calculation 3	measuring limit [0+255]		(
Calculation 4		100	
	upper meas. limit in x % of meas, range end value	100	
	incost range end voide		
	Output value to be sent for upper	255	
	measuring limit [0+255]		

Use input

Options:

<u>No</u> Yes

The parameter enables input a.

As a result, further parameters and communication objects become visible.

Sensor type

Options: Current/Voltage/Resistance <u>Temperature-dependent resistance</u> Floating contact scanning

The Sensor type is set with this parameter.

Selection of option Current/Voltage/Resistance

Dependent parameters:

Sensor output

Options:

0...1 V 0...5 V <u>0...10 V</u> 1...10 V 0...20 mA 4...20 mA 0...1,000 ohms

With this parameter the input range of the connected sensor is set to the Sensor output.

Send output value as

Options: <u>1-byte [0...+255]</u> 1-byte [-128...+127] 2-byte [0...+65,535] 2-byte [-32,768...+32,767] 2-byte (floating point) 4-byte (IEEE floating point)

This parameter defines in which format the Output value should be sent.

If the option 2-byte (floating point) or 4-byte (IEEE floating point) is set, a further parameter will also appear at the bottom of the parameter window.

What is the output value?

The Analogue Input records a sensor measured value, converts it according to the set parameters and sends it on the bus. This sent value is designated as the output value.

Measuring range definition

General		[V	
a: General	Use input	res	•
a: Output	Sensor type	Current/Voltage/Resistance	•
a: Threshold 1			
a: Threshold 1 Output	Sensor output	010 V	•
a: Threshold 2			
a: Threshold 2 Output	Send output value as	1-byte [0+255]	•
b: General	Measuring range definition		
c: General			
d: General	Lower meas. limit in x % of	0	
Calculation 1	meas. range end value		
Calculation 2	Output value to be sent for lower	0	
Calculation 3	measuring limit [0+255]		-
Calculation 4			
	Upper meas. limit in x % of	100	
	meas, range end value		
	Output value to be sent for upper	255	
	measuring limit [0+255]		

The following four parameters are dependent on the parameter Send output value as.

The preset values change dependent on the selected option. With the options 2-byte (floating point) or 4-byte (IEEE floating point) the additional Factor parameter appears.

The following description is an example for all adjustable options.

Lower meas. limit in x % of meas. range end value Options: <u>0</u>...100

Upper meas. limit in x % of meas. range end value

Options: 0...<u>100</u>

Using both of these parameters the lower and upper measuring limits in x % of the measuring range end value are set. If the set upper and lower measuring limits are exceeded or not achieved, the communication object *Measured value out of range – Input a* sends a 1. If the measured value is back between the limits, the communication object sends a 0.

What is the measuring range end value?

The measuring range end value is used to define the maximum voltage, current, resistance value or temperature value which is set in the *Sensor output* parameter, e.g. a sensor with signal output from 0...10 V has a measuring range end value of 10 V.

Output value to be sent for lower

measuring limit [0...+255]

Options: <u>0</u>...255

Output value to be sent for upper measuring limit [0...+255]

Options: 0...<u>255</u>

Using both these parameters the Output values to be sent for upper and lower measuring limits [0...+255] are set. The measuring curve between the upper and lower measuring limits is linear.

What is the measuring limit?

Using the measuring limit, you define up to which set values the Analogue Input is to evaluate the signal of the connected sensor. Both an upper and a lower measuring limit can be set.

Example

A sensor with a measuring range of 0...1,000 ohms is connected, but the measuring curve should only be evaluated between 10 and 90 % (100...900 ohms). In this case the measuring limits are between 100 and 900 ohms.

Selection of option 2-byte (floating point) for parameter Send output value as:

Dependent parameter:

Factor for the output values and thresholds Options: 0.01 0.1 1 10 100

Selection of option 4-byte (IEEE floating point) for parameter Send output value as:

Dependent parameter:

Factor for the output values and thresholds Options: 0.00000

ns:	0.000001
	0.00001
	0.0001
	0.001
	0.01
	0.1
	<u>1</u>
	10
	100
	1,000
	10,000
	100,000
	1,000,000

Using this parameter the factors for the output values and thresholds are set.

Example
Option 1: The output value is transferred 1:1.

By entering a factor, units can be converted, i.e. the output value corresponds to the output value to be sent multiplied by the set factor.

3.2.3.1 Parameter window a: Output

This parameter window is enabled if the parameter *Use input* has been set to Yes in <u>Parameter window</u> <u>a: General with sensor type: Current/Voltage/Resistance</u>, p. 42.

General	Commute	< Nata	
a: General	One measurement per second	<- Note	
a: Output			
a: Threshold 1	Filter	Inactive	•
a: Threshold 1 Output			
a: Threshold 2			
a: Threshold 2 Output	Send output value	Cyclically	•
b: General		(r	
c: General	Output value is sent every	D S	•
d: General			
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Scan rate

The sensor signal of input is measured once per second.

Filter Options:

Inactive Low (mean value over 4 measurements) Medium (mean value over 16 measurements) High (mean value over 64 measurements)

This parameter is used for setting a filter (floating mean value filter). This can be used to set the output value as a mean value using three different options.

- Inactive: Filter is not active
- Low: Mean output value over 4 measurements
- Medium: Mean output value over 16 measurements
- High: Mean output value over 64 measurements

Important

By use of the filter the output value is "smoothed" via the mean value and is available for further processing. The filter thus has immediate effects on the thresholds and calculation values. The higher the degree of the filtering applied, the smoother the result. This means that the changes to the output values become slower.

Example: An erratic change of the sensor signal with the setting *Medium* will take 16 seconds until the output value is through.

Send output value

Options:	On request
•	On change
	Cyclically
	On change and cyclically

This parameter defines how the output value should be sent.

On request: The output value is sent on request.

The Request output value - Input a communication object appears.

As soon as a 1 is received at this communication object, the current output value is sent once to the communication object *Output value – Input a*.

- On change: The output value is sent when a change occurs.
- Cyclically: The output value is sent cyclically.
- On change and cyclically: The output value is sent cyclically when a change occurs.

Selection of options On change, Cyclically and On change and cyclically:

Dependent parameters:

Options:

Output value is sent every

<u>5</u>/10/30 s 1/5/10/30 min 1/6/12/24 h

The interval for cyclical sending is set with this additional parameter.

Output value is sent from a x % change in the output range Options: 1...10...200

Using this parameter you define from which percentage change of the output range the output value is to be sent.

With option 2 the output value is sent from a 2 % change in the output range.

What is the output range?

The output range is determined by the setting options for the upper and lower measuring limits. The difference between the upper and lower measuring limits forms the output range.

Example

If the lower measuring limit of the sensor (0...1,000 ohms) is set to 10 % (100 ohms) and the upper measuring limit to 90 % (900 ohms), the output range is (900 ohms - 100 ohms) = 800 ohms. 2 % of 800 ohms = 16 ohms.

3.2.3.2 Parameter window a: Threshold 1

The details in the following also apply to b: Threshold 2 Output.

General a: General	Use threshold	Yes	•
a: Output	Tolerance band lower limit	0	
a: Threshold 1	Tolerance band lower mint	Ū	
a: Threshold 1 Output a: Threshold 2	Tolerance band upper limit	255	
a: Threshold 2 Output	Limits modifiable via bus	No	•
b: General			
c: General	Data type of threshold object	1-bit	•
d: General			
Calculation 1	Send if threshold fallen below	Send OFF telegram	•
Calculation 2	Min. duration of the undershoot	None	
Calculation 3	Min. duration of the undershoot	INGINE	•
Calculation 4	Send if threshold exceeded	Send ON telegram	•
	Min. duration of the overshoot	None	•

Use threshold

Options: <u>No</u> Yes

This parameter defines if threshold 1 should be used. If Yes is selected, the communication object *Threshold – Input a Threshold 1* appears.

Tolerance band lower limit

Tolerance band upper limit

Options: Dependent on parameter Send output value as in Parameter window a: General with sensor type: Current/Voltage/Resistance

The upper and lower limits of the tolerance band are set via these two parameters.

For further information see: Appendix

Note

Depending on the setting of the parameter *Send output value as* in parameter window *a General*, different limit values are preselected (see <u>Parameter window a: General with sensor type:</u> <u>Current/Voltage/Resistance</u>, p. 42).

Limits modifiable via bus

Options: <u>No</u> Yes

This parameter specifies whether the limits can be changed via the bus.

• Yes: The following communication objects appear:

Modify – Input a Threshold 1 lower limit

Modify - Input a Threshold 1 upper limit.

Important

The value formats of these communication objects are the same as the format set in parameter window *a: General,* under the parameter *Send output value as* (see <u>Parameter window a: General with sensor</u> <u>type: Current/Voltage/Resistance</u>, p. 42). The value must be sent in the same format as the output value of the input.

Data type of threshold object

Options: <u>1-bit</u>

1-byte [0...+255]

Selection of option 1-bit:

Dependent parameters:

Send if threshold fallen below

Options: Do not send telegram Send ON telegram Send OFF telegram

Send if threshold exceeded

Options:

Options:

- Do not send telegram <u>Send ON telegram</u> Send OFF telegram
- Do not send telegram: There is no reaction.
- Send ON telegram: A telegram with the value 1 is sent.
- Send OFF telegram: A telegram with the value 0 is sent.

Min. duration of the undershoot

Min. duration of the overshoot

<u>None</u> 5/10/30 s 1/5/10/30 min 1/6/12/24 h

• None: the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegrams are sent.

Selection of option 1-byte [0...+255]:

Dependent parameters:

Send if threshold fallen below [0...+255] Options: 0...255

Send if threshold exceeded [0...+255] Options: 0...<u>255</u>

A value of 0 to 255 can be entered in single steps.

Min. duration of the undershoot

Min. duration of the overshoot

Options: N

<u>None</u> 5/10/30 s 1/5/10/30 min 1/6/12/24 h

• *None*: the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegram is sent.

3.2.3.3 Parameter window a: Threshold 1 Output

The details in the following also apply to a: Threshold 2 Output.

General	Count Alexandra I al ale Count	On change and cyclically	
a: General	Send threshold object	On change and cyclically	
a: Output	Send if threshold	30 s	•
a: Threshold 1	fallen below every		
a: Threshold 1 Output		20-	
a: Threshold 2	Send if threshold	30 s	•
a: Threshold 2 Output	cacceded every		
b: General			
c: General			
d: General			
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Send threshold object

Options: On change On change and cyclically

This parameter is used to specify the send behavior of the threshold object.

- On change: The threshold object is sent when a change occurs.
- On change and cyclically: The threshold object is sent cyclically when a change occurs. The threshold object is sent cyclically until the value falls below or exceeds the other limit.

Dependent parameters:

Send if threshold fallen below every

Send if threshold exceeded every

Options: 5/10/<u>30 s</u> 1/5/10/30 min 1/6/12/24 h

These two parameters are used to define the point to which cyclical sending should take place after an undershoot of the lower limit or an overshoot of the upper limit.

3.2.4 Parameter window *a:* General with sensor type: *Floating contact scanning*

Setting options with sensor type Floating contact scanning.

The specifications below also apply to parameter windows b...d: General.

General	11222	N	
a: General	Use input	res	•
a: Output	Sensor type	Floating contact scanning	•
a: Threshold 1			
a: Threshold 1 Output	Signal ON if contact	Open	-
a: Threshold 2			
a: Threshold 2 Output	Output value is sent as	1-bit	
b: General			
c: General			
d: General			
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Use input

Options: <u>No</u> Yes

The parameter enables input a.

As a result, further parameters and communication objects become visible.

Sensor type

Options:	Current/Voltage/Resistance	
	Temperature-dependent resistance	
	Floating contact scanning	

The Sensor type is set with this parameter.

Selection of option Floating contact scanning:

Dependent parameters:

Signal ON if contact

Options:

Closed Open

With this parameter the contact is set with an ON signal.

- Closed: The contact is closed with an ON signal.
- Open: The contact is opened with an ON signal.

Output value is sent as

This parameter preset to 1-bit.

Bit value 0 = Signal OFF

Bit value 1 = Signal ON

3.2.4.1 Parameter window *a: Output*

This parameter window is enabled if the parameter *Use input* has been set to Yes in <u>Parameter window</u> <u>a: General with sensor type: Floating contact scanning</u>, p. 53.

General a: General	Send output value	Cyclically	•
a: Output	Output value is sent every	5 s	•
a: Threshold 1	output value is sent every		
a: Threshold 1 Output			
a: Threshold 2			
a: Threshold 2 Output			
b: General			
c: General			
d: General			
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Send output value

Options: On request On change <u>Cyclically</u> On change and cyclically

This parameter defines how the output value should be sent.

On request: The output value is sent on request.

The Request output value - Input a communication object appears.

As soon as a 1 is received at this communication object, the current output value is sent once to the communication object *Output value – Input a*.

- On change: The output value is sent when a change occurs.
- Cyclically: The output value is sent cyclically.
- On change and cyclically: The output value is sent cyclically when a change occurs.

Selection of options On change, cyclically and On change and cyclically:

Dependent parameters:

Output value is sent every

Options: <u>5</u>/10/30 s 1/5/10/30 min 1/6/12/24 h

The interval for cyclical sending is set with this additional parameter.

3.2.4.2 Parameter window a: Threshold 1

The details in the following also apply to b: Threshold 2 Output.

General a: General	Use threshold	Yes	•
a: Output	Data type of threshold object	1-bit	•
a: Threshold 1	but type of the should object		
a: Threshold 1 Output	Send if signal OFF	Send OFF telegram	•
a: Threshold 2			
a: Threshold 2 Output	Min. duration for signal OFF	None	•
b: General		[Cond ON to Issue]
c: General	Send if signal ON	Send ON telegram	•
d: General	Min. duration for signal ON	None	•
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Use threshold

Options: <u>No</u> Yes

This parameter defines if threshold 1 should be used. If Yes is selected, the communication object *Threshold – Input a Threshold 1* appears.

Data type of threshold object

Options:

<u>1-bit</u> 1-byte [0...+255]

Selection of option 1-bit:

Dependent parameters:

Send if signal OFF

Options:

Do not send telegram Send ON telegram Send OFF telegram

Send if signal ON

Options:

Do not send telegram <u>Send ON telegram</u> Send OFF telegram

- Do not send telegram: There is no reaction.
- Send ON telegram: A telegram with the value 1 is sent.
- Send OFF telegram: A telegram with the value 0 is sent.

Min. duration for signal OFF

Min. duration for signal ON

None

Options:

5/10/30 s 1/5/10/30 min 1/6/12/24 h

• None: the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegram is sent.

Selection of option 1-byte [0 ... +255]:

Dependent parameters:

Send if signal OFF [0...+255]

Options: <u>0</u>...255

Send if signal ON [0...+255]

Options: 0...255

A value of 0 to 255 can be entered in single steps.

Min. duration for signal OFF

Min. duration for signal ON

Options:

<u>None</u> 5/10/30 s 1/5/10/30 min 1/6/12/24 h

• *None:* the threshold is sent directly.

With the further time options, a minimum duration can be selected. If the send condition reverts during the minimum duration, no telegram is sent.

3.2.4.3 Parameter window a: Threshold 1 Output

The details in the following also apply to a: Threshold 2 Output.

General	Sand thrashold object	On change and cyclically	-
a: General	Send threshold object	on change and cyclically	
a: Output	Send if signal OFF every	30 s	•
a: Threshold 1			
a: Threshold 1 Output	Send if signal ON every	30 s	-
a: Threshold 2		L	
a: Threshold 2 Output			
b: General			
c: General			
d: General			
Calculation 1			
Calculation 2			
Calculation 3			
Calculation 4			

Send threshold object

Options:

On change On change and cyclically

This parameter is used to specify the send behavior of the threshold object.

- On change: The threshold object is sent when a change occurs.
- On change and cyclically: The threshold object is sent cyclically when a change occurs. The threshold object is sent cyclically until the value falls below or exceeds the other limit.

Dependent parameters:

Send if signal OFF every

Send if signal ON every

Options:

5/10/<u>30 s</u> 1/5/10/30 min 1/6/12/24 h

These two parameters are used to define the point at which cyclical sending should take place after an undershoot of the lower limit or an overshoot of the upper limit.

3.2.5

Parameter window Calculation 1 – Calculation type: Compare

The specifications below also apply to the parameter windows Calculation 2, 3 and 4.

General		Vec	
a: General	Use calculation	103	•
a: Output	Calculation type	Compare	-
a: Threshold 1			
a: Threshold 1 Output	Input 1	Input a Output value	-
a: Threshold 2			
a: Threshold 2 Output	Input 2	Input b Output value	•
b: General	Evention	Input 1 < Input 2	
c: General	Function	Input 1 < Input 2	•
d: General	Hysteresis	5	
Calculation 1	(in x % from outp. range of input 1)		-
Calculation 2			
Calculation 3	Condition met	Send ON telegram	•
Calculation 4	Condition not met	Send OFF telegram	•
	Send output value	On change and cyclically	•
	Output value is sent every	5 s	•

Use calculation

Options: <u>No</u> Yes

This parameter is used to determine if Calculation 1 is to be used.

• With the selection Yes the communication object Send output value - Calculation 1 appears.

Calculation type

Options: <u>Compare</u> Arithmetic

The calculation type is set with this parameter.

- Compare: Comparison of two output values
- Arithmetic: Arithmetic logic of two output values

Input 1

Options:	Input a Output value
	Input b Output value
	Input c Output value
	Input d Output value

Input 2

Options: Input a Output value Input b Output value Input c Output value Input d Output value

With both these parameters the inputs 1 and 2 are assigned the comparative object values.

Function

Options:

Inpu	t 1 < Input 2
Inpu	t1 > lnput 2
Inpu	t 1 = Input 2

Using this parameter, one of three selectable comparative functions is defined. Input 1 less than input 2, input 1 greater than input 2 or input 1 equal to input 2.

Hysteresis

(in x % from outp. range of input 1)

Options: 1...<u>5</u>...100

With the setting for this parameter the hysteresis band is defined dependent on the output range of input 1.

Condition met

Options:	Do not send telegram
-	Send ON telegram
	Send OFF telegram

Condition not met

Options: Do not send telegram Send ON telegram Send OFF telegram

Using both these parameters, the telegrams which are to be sent when the comparative function is met (condition) or not met are defined. The telegram is sent on the bus via the communication object *Send output value* – *Calculation 1*.

Send output value

Options:	On change
	On change and cyclically

This parameter defines how the output value should be sent.

- On change: The output value is sent when a change occurs.
- On change and cyclically: The output value is sent cyclically when a change occurs.

Dependent parameter:

Output value is sent every

-	-
Options:	<u>5</u> /10/30 s
	1/5/10/30 min
	1/6/12/24 h

The interval for cyclical sending is set with this additional parameter.

3.2.6

Parameter window Calculation 1 – Calculation type: Arithmetic

The specifications in the following also apply to the parameter windows Calculation 2, 3 and 4.

General	The estimation (Ver	
a: General	Ose calculation	Tes	
a: Output	Calculation type	Arithmetic	•
a: Threshold 1			
a: Threshold 1 Output	Input 1	Input a Output value	-
a: Threshold 2			
a: Threshold 2 Output	Input 2	Input b Output value	•
b: General	Europhian	Input 1 + Input 2	
c: General	Function	input 1 + input 2	•
d: General	Send output value as	1-byte [0+255]	•
Calculation 1			
Calculation 2	Send output value	Cyclically	-
Calculation 3		6	
Calculation 4	Output value is sent every	5 s	•

Use calculation

Options:

<u>No</u> Yes

This parameter is used to determine if Calculation 1 is to be used.

• With the selection Yes the communication object Send output value - Calculation 1 appears.

Calculation type

Options:	Compare
	Arithmetic

The calculation type is set with this parameter.

- Compare: Comparison of two output values
- Arithmetic: Arithmetic logic of two output values

Input 1

Options:	Input a Output value
-	Input b Output value
	Input c Output value
	Input d Output value

Input 2

Options:	Input a Output value
	Input b Output value
	Input c Output value
	Input d Output value

With both these parameters the inputs 1 and 2 are assigned the comparative object values.

Function

Options:

Options:

Input 1 + Input 2 Input 1 - Input 2 Arithmetic mean value

- Input 1 + Input 2: Input 1 and input 2 are added.
- Input 1 Input 2: Input 2 is subtracted from input 1.
- Arithmetic mean value: The arithmetic mean value is calculated between input 1 and input 2.

Send output value as

1-byte [0...+255] 1-byte [-128...+127] 2-byte [0...+65,535] 2-byte [-32,768...+32,767] 2-byte (floating point) 4-byte (IEEE floating point)

This parameter defines in which format the Output value should be sent.

Important

The setting assumes that the result of the calculation matches the set format. Otherwise the result is capped.

In order to guarantee full interoperability to other KNX devices, only a data type should be selected for the output which according to KONNEX is permissible for the calculated physical value!

Send output value

Options: On change Cyclically On change and cyclically

This parameter defines how the output value should be sent.

- On change: The output value is sent when a change occurs.
- Cyclically: The output value is sent cyclically.
- On change and cyclically: The output value is sent cyclically when a change occurs.

Selection of option On change and cyclically:

Dependent parameters:

Options:

Output value is sent every

<u>5</u>/10/30 s 1/5/10/30 min 1/6/12/24 h

The interval for cyclical sending is set with this additional parameter.

```
Output value is sent from a x %
change in the output range, Input 1
Options: 1...2...100
```

Using this parameter, you define from which percentage change of the output range of input 1 the Output value calculation x is to be sent.

With option 2, the output value is sent from a 2 % change of the output value calculation x.

Important

The output range of a PT100 sensor on Input a is -50...+150 °C. This means that the output range is 200 °C, $\frac{1}{2}$ of which is 4 °C, i.e. with a change of \pm 4 °C the Output value calculation x is sent.

3.3 Communication objects

3.3.1 Summary of communication objects

Na	Function	Name	Data Point	Longth		Flags			
NO.			Type (DPT)	Length	С	R	W	Т	U
0	Output value	Input a	Variable	Variable	х	x		х	
1	Request output value	Input a	1.009	1-bit	х		х		
2	Measured value out of range	Input a	1.001	1-bit	х		х		
3	Threshold	Input a Threshold 1	Variable	Variable	x	x		х	
4	Modify	Input a Threshold 1 lower limit	Variable	Variable	х	х		х	
5	Modify	Input a Threshold 1 upper limit	Variable	Variable	х	х		х	
6	Threshold	Input a Threshold 2	Variable	Variable	х	х		х	
7	Modify	Input a Threshold 2 lower limit	Variable	Variable	х	х		х	
8	Modify	Input a Threshold 2 upper limit	Variable	Variable	х	х		х	
9	Output value	Input b	Variable	Variable	x	x		х	
10	Request output value	Input b	1.009	1-bit	х		x		
11	Measured value out of range	Input b	1.001	1-bit	х		x		
12	Threshold	Input b Threshold 1	Variable	Variable	x	x		х	
13	Modify	Input b Threshold 1 lower limit	Variable	Variable	х	х		х	
14	Modify	Input b Threshold 1 upper limit	Variable	Variable	х	х		х	
15	Threshold	Input b Threshold 2	Variable	Variable	х	х		х	
16	Modify	Input b Threshold 2 lower limit	Variable	Variable	х	х		х	
17	Modify	Input b Threshold 2 upper limit	Variable	Variable	х	х		х	
18	Output value	Input c	Variable	Variable	x	x		х	
19	Request output value	Input c	1.009	1-bit	х		х		
20	Measured value out of range	Input c	1.001	1-bit	х		х		
21	Threshold	Input c Threshold 1	Variable	Variable	х	x		х	
22	Modify	Input c Threshold 1 lower limit	Variable	Variable	х	х		х	
23	Modify	Input c Threshold 1 upper limit	Variable	Variable	х	х		х	
24	Threshold	Input c Threshold 2	Variable	Variable	х	х		х	
25	Modify	Input c Threshold 2 lower limit	Variable	Variable	х	х		х	
26	Modify	Input c Threshold 2 upper limit	Variable	Variable	х	х		х	

No	Function	Name	Data Point	Longth	Flags				
NO.			Type (DPT)	Length	С	R	w	Т	U
27	Output value	Input d	Variable	Variable	х	х		х	
28	Request output value	Input d	1.009	1-bit	х		х		
29	Measured value out of range	Input d	1.001	1-bit	х		x		
30	Threshold	Input d Threshold 1	Variable	Variable	х	x		x	
31	Modify	Input d Threshold 1 lower limit	Variable	Variable	х	х		х	
32	Modify	Input d Threshold 1 upper limit	Variable	Variable	х	х		х	
33	Threshold	Input d Threshold 2	Variable	Variable	х	х		х	
34	Modify	Input d Threshold 2 lower limit	Variable	Variable	х	х		х	
35	Modify	Input d Threshold 2 upper limit	Variable	Variable	х	х		х	
36	Send output value	Calculation 1	Variable	1-bit	х			x	
37	Send output value	Calculation 2	Variable	1-bit	х			x	
38	Send output value	Calculation 3	Variable	1-bit	x			x	
39	Send output value	Calculation 4	Variable	1-bit	х			x	
40	In operation	General	1.003	1-bit	х	х		х	
41	Status byte	General	-	1 byte	x	х		x	

3.3.2 Communication objects Input a

No.	Function	Object name	Data type	Flags				
0	Output value	Input a	Variable DPT variable	C, R, T				
This co	mmunication object is used to send the out	put value to the bus.		•				
The fo	lowing values can be sent:							
	1-bit value [0/1]	DPT 1	.001					
	1-byte value [0+255]	DPT 5	5.010					
	1-byte value [-128+127]	DPT 6	5.010					
	2-byte value [0+65,535]	DPT 7	7.001					
	2-byte value [-32,768+32,767]	DPT 8	8.001					
	2 byte value (floating point)	DPT 9	0.001					
	4-byte value (IEEE floating point)	DPT 1	4.068					
What i Up to a Furthe	s sent at an undershoot or overshoot of in overshoot of 10 % the measured value is more, the measured value continues to be	10 %? shown and sent. This appliest sent as a <i>Measured value</i> +	es to both the upper and	l lower limits.				
The fo	lowing must be observed, particularly with t	he lower limit:						
This or	This only applies if the lower limit is different from 0. If the lower limit is 0, it is not possible to determine an undershoot.							
1	Request output value	Input a	1-bit DPT 1.009	C, W				
This communication object appears if the output value On request is to be sent								
If a 1 is received at this communication object, the current output value is sent once from the communication object <i>Output</i> value – Input a.								

0 = Measured value in range

The communication object can be used to check the plausibility of the sensor, e.g. wire breakage at 1–10 V or at 4–20 mA. The check is carried out after each measurement.

Example

A wind sensor with a sensor signal of 4...20 mA and a measuring range of 0...40 m/s is connected to the Analogue Input. Output range is 16 mA (20...4 mA)

Upper measuring limit:

The communication object *Measured value outside range* is sent when the upper measuring limit is exceeded by 5 %, i.e. 16.8 mA (16 mA + 5 %).

Lower measuring limit:

The communication object *Measured value out of range* is sent when the lower measuring limit is undershot by 5 %, i.e. 3.8 mA (4 mA - 5 %).

When is the value of the communication object sent?

Measured value out of range is sent if the measured value exceeds the lower or upper limit by more than 5 %. The following must be observed, particularly with the lower limit:

This only applies if the lower limit is different from 0. If the lower limit is 0, it is not possible to determine an undershoot.

Behavior with PT100 or PT1000?

The following applies with the calculation of the maximum and minimum output values with the PT100/1000: The lowest measurable resistance with the PT100 is about 80 ohms (with the PT1000 800 ohms) and corresponds to about -50 °C.

The highest measurable resistance with the PT100 is about 157 ohms (with the PT1000 1,570 ohms) and corresponds to about +150 °C.

Important

The programmable feeder line resistance is subtracted from the measured resistance. Thereafter, a programmable temperature offset is added.

Depending on the programming of the feeder line resistances and the temperature offset, different minimum and maximum values result.

If the sensor goes open circuit, the highest possible positive temperature value in $^{\circ}$ C is sent. If the sensor goes short circuit, the lowest possible negative temperature value in $^{\circ}$ C is sent. The sent temperature values are dependent, for example, on the temperature sensor used, on line faults, ambient temperatures, etc.

Behavior with a floating contact?

The communication object has no function with the selection.

No.	Function	Object name	Data type	Flags
3	Threshold	Input a Threshold 1	Variable DPT variable	C, R, T
As soo	n as the set threshold is exceeded or fallen	below, it is possible to send the	following values:	
	1-bit value [0/1]	DPT 1.00	1	
	1-byte value [0+255]	DPT 5.01	D	
The ob parame	ject value depends on the parameter <i>Data</i> eter window <i>a: Threshold</i> 1.	type of threshold object (1-bit, 1	-byte). The paramete	er can be found in the
45	Modify	Input a Threshold 1 Iower limit	Variable DPT variable	C, R, T
		Input a Threshold 1 upper limit		
The da Input a	ta type of these communication objects dep	pends on the set data type of the	e communication obje	ect Output value –
Th	e lower limit should be selected to be lower	than the upper limit.		
6	See communication object 3	Input a Threshold 2		
		1	1	
78	See communication objects 4 and 5	Input a Threshold 2 Iower limit		
		Input a Threshold 2 upper limit		

3.3.3 Communication objects Input b, c and d

No.	Function	Object name	Data type	Flags
917	See communication objects 08	Input b		
1826	See communication objects 08	Input c		
2735	See communication objects 08	Input d		

Note

With the 3-conductor connection the following applies:

• Input a or c always measures the measuring resistor.

• Input b or d always measures the cable resistance.

When a 3-conductor connection is selected, inputs b and d are visible in the communication objects. If a group address is linked to these inputs, then the measured cable resistance is transmitted. It should be noted that the temperature value must be converted with the DPT 9.001, so that the resistance value remains intact.

3.3.4 Communication objects *Calculation 1*

Flags
С, Т
d for the output

3.3.5 Communication objects Calculation 2, 3, and 4

No.	Function	Object name	Data type	Flags
37	See communication object 36	Calculation 2		
38	See communication object 36	Calculation 3		
39	See communication object 36	Calculation 4		

3.3.6 Communication objects General

No.	Function		Object name	Data type	Flags					
40	In operation	1	General	1-bit DPT 1.003	C, R, T					
This communication object appears if, in the <u>Parameter window General</u> , p. 23, <i>Enable communication object "In operation", 1-bit</i> has been selected and set to <i>Value 0</i> or <i>Value 1</i> .										
	A o or a this serie cyclically on the bus depending on the setting.									
41	Status byte		General	1 byte DPT none	C, R, T					
The sta	atus byte reflec	ts the current state of th	ne Analogue Input.							
Differei	nt states are in	idicated here, e.g.								
 State State 	atus Input a – I	Measured value out of ra	ange ange and self calibration							
 Bit sea 	uence:		76543210							
Dit 364	Bit 7 [.]	Not assigned	always 0							
	Bit 6:	Mains voltage failure:								
		Ū	0: Mains available							
			1: Mains voltage failure, no n	neasured values						
	Bit 5:	Not assigned	always 0							
	Bit 4:	Status of internal calil	oration							
			0: Calibration completed 1: Calibration running							
	Bit 3:	Status Input d Measu	red value out of range							
			0: In range							
			1: Out of range							
	Bit 2:	Status Input c Measu	red value out of range							
			0: In range							
	Dit 1.	Status Input h Maasu	red value out of range							
	DIL I.	Status input b Measu								
			1: Out of range							
	Bit 0:	Status Input a Measu	red value out of range							
			0: In range							
			1: Out of range							
The val value c	lue of the com of the commun	munication object is ser ication object is sent au	nt when a change occurs or c comatically once after the dev	an be read out via a Value	Read command. The t send delay.					
For fur	For further information see: Value table of communication object Status byte – General									
ABB i-bus[®] KNX Planning and application

4 Planning and application

4.1 Description of the Threshold function

How does the threshold function work?

Settings

- Communication object *Threshold* is set to a 1-bit value.
- An OFF telegram is sent with an undershoot of the threshold, and an ON telegram is sent with an
 overshoot of the threshold.

In the example diagram above, it can be seen that the measured value begins "somewhere", in this example with a 0 value. The communication object for *Threshold 1* has the value 0 and is sent cyclically as per application settings.

As long as the measured value does <u>not</u> exceed the upper limit of threshold 1, the communication object *Threshold* will remain at value 0.

As soon as the measured value exceeds the upper limit of threshold 1, the communication object *Threshold* will change value to 1.

The communication object *Threshold 1* will remain 1 until the measured value falls back below the lower limit of threshold 1.

ABB i-bus[®] KNX Appendix

A Appendix

A.1 Scope of delivery

The device is supplied together with the following components. Please check the items received using the following list:

- 1 (one) AE/S 4.1.1.3 Analogue Input, 4-fold, MDRC
- 1 (one) set of installation and operating instructions
- 1 (one) bus connection terminal (red/black)

ABB i-bus[®] KNX Appendix

A.2

Value table of communication object Status byte – General

No.		7	6	5	4	3	2	1	0		No.		7	6	5	4	3	2	1	0	N		7	6	5	4	3	2	1	0
					al											al										al				
	a	þ	ge	þ	terr	fd	tc	t b	fta			ᇑ	b	ge	ð	terr	t d	t c	ťb	it a		a	p	ge	þ	terr	it d	tc	ťb	it a
lue	ci	igne	olta	igne	of in ion	ndu	ndu	ndu	ndu		lue	cin	igne	olta	igne	of in ion	ndu	ndu	ndu	ndu	g	ci	igne	olta	igne	of in ion	ndu	ndu	ndu	ndu
val	ade	ass	IS V	ass	us c orati	ns l	l sn	ll sn	l sn		val	ade	ass	IS V	ass	us c orati	l su	us l	l sn	l sn	Val.	ade	ass	IS V	ass	us c orati	us l	us l	l su	us l
-bit	lexa	lot	Aain ailu	lot	stati	stati	Stati	Stati	Stati		-bit	lexa	lot	Aain ailu	lot	Stati	stati	Stati	Stati	stati	tiq.	le X 8	ot	Aain ailu	lot	stati	statı	statı	statı	Stati
0	00	~	24	~	0,0		0,	0,	0,		86	56	~	2 42	2	• •	0,	•	•	•	17	2 AC	~	~~	~	0,0	•	•		0,
1	01							_			87	57					_				17	3 AD							_	
3	02										88 89	58					-				17	AE AE					-	-	-	
4	04								_		90	5A					-		-	_	17	6 B0				•				-
6	05								-		91	5D					-			-	17	B1 B2								-
7	07										93 94	5D 5E							-		17	B3 B3						-		
9	09										95	5F									18	1 B5				-				
10	0A 0B										96 97	60 61									18	2 B6 3 B7								
12	0C								_		98	62							-		18	4 B8								_
13	0D 0E								-		100	64							-	-	18	5 B9					-		•	-
15	0F				-						101	65						-	-		18	7 BB								
17	11				-						103	67						-			18	BD BD								
18 19	12										104	68 69									19) BE								
20	14										106	6A									19	2 C0								-
21 22	15 16								-		107 108	6B 6C			_					•	19	3 C1 4 C2	-							-
23	17					_					109	6D									19	5 C3						_		
24 25	18										110	6F									19	7 C5								
26	1A				•				_		112	70								_	19	3 C6								
27	1C				-						113	71								-	20) C8					-	-	-	-
29	1D 1E				-						115	73						-			20	1 C9	_							
31	1F					-					117	75						-			20	B CB								
32	20										118	76									20	4 CC								
34	22								_		120	78									20	6 CE								_
35	23								-		121	79 7A								-	20	7 CF 3 D0					-	-		-
37	25							_			123	7B					-	-			20	9 D1							_	
38	20										124	70 7D						-			21	1 D3								
40	28								_		126	7E		-		-				-	21	2 D4		-				-		
42	23 2A										128	80		_		-	_	_	_		21	4 D6						•		
43	2B 2C									-	129	81 82									21	5 D7 6 D8	-				-	•		
45	2D							_			131	83						_			21	7 D9							_	
46	2E 2F										132	84 85						-			21	DA DA					-		-	
48	30				-						134	86						•	-		22	DC					-	•		
49 50	32				-				-		135	88					-	-		-	22	2 DE						-		-
51 52	33 34				-						137	89 84					-				22	3 DF	_					-		
53	35				-						139	8B					-				22	5 E1								
54 55	36 37				-						140 141	8C 8D									22	5 E2 7 E3								
56	38				-						142	8E					-				22	3 E4								_
57	39 3A										143	8F 90					-	-			22	E5 E6								-
59 60	3B						_				145	91							-		23	1 E7					-			
61	3D										147	93				i					23	3 E9								
62 63	3E 3F										148 149	94 95	-								23	4 EA								
64	40										150	96			_						23	6 EC								_
66	41 42								-		151	97 98			-						23	B EE	-							
67	43	-		-			_				153	99			-				-		23	EF			-					
69	44		-								155	9B				-	-				24	1 F1								
70	46 47									-	156 157	9C 9D									24	2 F2 3 F3								
72	48										158	9E									24	4 F4								-
73	49 4A										159 160	9F A0									24	5 F5							-	
75	4B						_				161	A1							_		24	7 F7								
76	40 4D										162	A2 A3									24	F9								
78	4E 4F										164	A4			_						25	FA								
80	50										166	A6									25	2 FC				-			_	
81 82	51 52								-		167 168	A7 A8			_					•	25	3 FD 4 FE	-							
83	53										169	A9							-		25	5 FF								
84 85	54 55									-	170	AA																		

Empty = Value 0

= Value 1, applicable

ABB i-bus® KNX Appendix

A.3

Conversion between °C and °F

No.:	°C	°F
1	-50	-58
2	-40	-40
3	-30	-22
4	-17.8	0
5	-20	-4
6	-10	+14
7	0	+32
8	+10	+50
9	+20	+68
10	+30	+86
11	+50	+122
12	+60	+140
13	+70	+158
14	+80	+176
15	+90	+194
16	+100	+212
17	+110	+230
18	+120	+248
19	+130	+266
20	+140	+284
21	+150	+302

Conversion formula

Celsius to Fahrenheit

Temperature in $^{\circ}F = ((T ^{\circ}Celsius x 9) / 5) + 32$

Fahrenheit to Celsius

Temperature in °C = (T °Fahrenheit - 32) x 5 / 9

ABB i-bus® KNX Appendix

A.4 Order details

Short description	Designation	Order No.	bbn 40 16779 EAN	Weight 1 pc. [kg]	Packaging [pcs.]
AE/S 4.1.1.3	Analogue Input, 4-fold, MDRC	2CDG110190R0011	929295	0.27	1

Contact

ABB STOTZ-KONTAKT GmbH

Eppelheimer Strasse 82 69123 Heidelberg, Germany Telephone: +49 (0)6221 701 607 +49 (0)6221 701 434 Fax: +49 (0)6221 701 724 E-mail: knx.marketing@de.abb.com

Further information and local contacts: www.abb.com/knx

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice.

The agreed properties are definitive for any orders placed. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Reproduction, transfer to third parties or processing of the content – including sections thereof – is not permitted without prior expressed written permission from ABB AG.

Copyright © 2015 ABB All rights reserved

