



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

ETA-20/0897 of 22 May 2023

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Bolt Anchor FAZ II Plus dynamic

Post-installed fasteners in concrete under fatigue cyclic loading

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

22 pages including 3 annexes which form an integral part of this assessment

EAD 330250-00-0601, Edition 06/2021

ETA-20/0897 issued on 20 December 2022



### European Technical Assessment ETA-20/0897

Page 2 of 22 | 22 May 2023

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



# **European Technical Assessment ETA-20/0897**

Page 3 of 22 | 22 May 2023

English translation prepared by DIBt

#### **Specific Part**

### 1 Technical description of the product

The fischer Bolt Anchor FAZ II Plus dynamic is an anchor made of galvanised steel (FAZ II Plus dynamic) or stainless steel (FAZ II Plus dynamic R) which is placed into a drilled hole and anchored by torque-controlled expansion.

The fastener consists of an fischer Bolt Anchor FAZ II Plus with cone bolt, expansion clip, washer and hexagon nut and a Dynamic set with filling conical washer, spherical washer and lock nut.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the fastener is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the fastener of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic (static, quasi-static loading and seismic)                      | Performance                  |
|------------------------------------------------------------------------------------------|------------------------------|
| Characteristic resistance to tension load (static and quasi-static loading)              | See Annexes<br>C 1, C 5, C 6 |
| Characteristic resistance to shear load (static and quasi-static loading)                | See Annex C 2                |
| Displacements (static and quasi-static loading)                                          | See Annex C 9                |
| Characteristic resistance and displacements for seismic performance categories C1 and C2 | See Annexes<br>C 7 to C 9    |

| Essential characteristic (fatigue loading, Linearized function - Assessment method C)                                                                                              | Performance                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| Characteristic fatigue resistance under cyclic tension loading                                                                                                                     |                              |  |  |
| Characteristic steel fatigue resistance $\Delta N_{Rk,s,0,n}$ ( $n = 1$ to $n = \infty$ )                                                                                          |                              |  |  |
| Characteristic concrete cone, pull-out, splitting and blow out fatigue resistance $\Delta N_{Rk,c,0,n}$ $\Delta N_{Rk,sp,0,n}$ $\Delta N_{Rk,cb,0,n}$ $(n$ = 1 to $n$ = $\infty$ ) | See Annexes<br>C 10 and C 11 |  |  |
| Characteristic pull- out fatigue resistance $\Delta N_{Rk,p,0,n}$ $(n$ = 1 to $n$ = $\infty$ )                                                                                     |                              |  |  |



# **European Technical Assessment ETA-20/0897**

Page 4 of 22 | 22 May 2023

English translation prepared by DIBt

| Essential characteristic (fatigue loading, Linearized function - Assessment method C)                   | Performance                  |  |  |
|---------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| Characteristic fatigue resistance under cyclic shear loading                                            |                              |  |  |
| Characteristic steel fatigue resistance $\Delta V_{Rk,s,0,n}$ ( $n$ = 1 to $n$ = $\infty$ )             |                              |  |  |
| Characteristic concrete edge fatigue resistance $V_{Rk,c,0,n}$ ( $n = 1$ to $n = \infty$ )              | See Annexes                  |  |  |
| Characteristic concrete pry out fatigue resistance $\Delta V_{Rk,cp,0,n}$ ( $n$ = 1 to $n$ = $\infty$ ) | C 10 and C 11                |  |  |
| Characteristic fatigue resistance under cyclic combined tension and shear                               | loading                      |  |  |
| Characteristic steel fatigue resistance $a_s$ ( $n$ = 1 to $n$ = $\infty$ )                             | See Annexes<br>C 10 and C 11 |  |  |
| Load transfer factor for cyclic tension and shear loading                                               |                              |  |  |
| Load transfer factor $\psi_{FN}, \psi_{FV}$                                                             | See Annexes<br>C 10 and C 11 |  |  |

### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance              |
|--------------------------|--------------------------|
| Reaction to fire         | Class A1                 |
| Resistance to fire       | See Annex<br>C 3 and C 4 |

### 3.3 Aspects of durability

| Essential characteristic | Performance   |
|--------------------------|---------------|
| Durability               | See Annex B 1 |

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document No. 330250-00-0601, the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

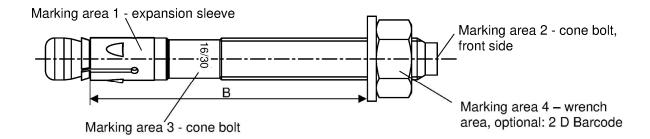
Issued in Berlin on 22 May 2023 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Stiller



Cone bolt manufactured by cold - forming: 2 Cone bolt manufactured by turning: 5 Radial: Axial: 1 Expansion sleeve 2 Cone bolt (cold – formed or turned) 3 Filling adapter 4 Filling conical washer (various versions) (5) Spherical washer 6 Washer Angular: 7 Hexagon nut 8 Lock nut

(Fig. not to scale)


fischer Bolt Anchor FAZ II Plus dynamic

Product description
Installed condition

Annex A 1



### **Product marking and letter-code:**



Product marking, example:

Brand | type of fastener placed at marking area 1 or 3

FAZ II + 16/30 R

Thread size / max. thickness of the fixture (t<sub>fix</sub>) identification R placed at marking area 1 or 3

FAZ II Plus dynamic: carbon steel, galvanised

FAZ II Plus dynamic R: stainless steel

Table A2.1: Letter - code at marking area 2:

| Marking      |         | (a) | (b) | (c) | (d) | (A) | (B) | (C) | (D) | (E) | (F) | (G) | (H) | (I) | (K) |
|--------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Max. tfix,ge | es [mm] | 5   | 10  | 15  | 20  | 5   | 10  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  |
|              | M16     | 70  | 75  | 80  | 85  | 90  | 95  | 100 | 105 | 110 | 115 | 120 | 125 | 130 | 135 |
| B ≥ [mm]     | M20     |     |     |     |     | 105 | 110 | 115 | 120 | 125 | 130 | 135 | 140 | 145 | 150 |
|              | M24     |     |     | _   |     | 130 | 135 | 140 | 145 | 150 | 155 | 160 | 165 | 170 | 175 |

| Marking      |         | (L) | (M) | (N) | (O) | (P) | (R) | (S) | (T) | (U) | (V) | (W) | (X) | (Y) | (Z) |
|--------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Max. tfix,ge | es [mm] | 60  | 70  | 80  | 90  | 100 | 120 | 140 | 160 | 180 | 200 | 250 | 300 | 350 | 400 |
|              | M16     | 145 | 155 | 165 | 175 | 185 | 205 | 225 | 245 | 265 | 285 | 335 | 385 | 435 | 485 |
| B ≥ [mm]     | M20     | 160 | 170 | 180 | 190 | 200 | 220 | 240 | 260 | 280 | 300 | 350 | 400 | 450 | 500 |
|              | M24     | 185 | 195 | 205 | 215 | 225 | 245 | 265 | 285 | 305 | 325 | 375 | 425 | 475 | 525 |

#### Calculation existing her for installed fasteners:

existing  $h_{ef} = B_{(according to table A2.1)} - existing t_{fix,ges}$ 

t<sub>fix,ges</sub> see Annex B2

(Fig. not to scale)

fischer Bolt Anchor FAZ II Plus dynamic

Product description
Product marking and letter code

Annex A 2



| D = #              | Designation            | Material                                                         |                                                                                                 |  |  |  |  |  |
|--------------------|------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Part               | Designation            | FAZ II Plus dynamic                                              | FAZ II Plus dynamic R                                                                           |  |  |  |  |  |
|                    |                        | Steel                                                            | Stainless steel R                                                                               |  |  |  |  |  |
|                    | Steel grade            | Zinc plated ≥ 5 μm,<br>ISO 4042:2018                             | Acc. to EN 10088:2014 Corrosion<br>resistance class CRC III acc. to<br>EN 1993-1-4:2006+A1:2015 |  |  |  |  |  |
| 1 Expansion sleeve |                        | Cold strip, EN 10139:2016 or<br>stainless steel<br>EN 10088:2014 | Stainless steel<br>EN 10088:2014                                                                |  |  |  |  |  |
| 2                  | Cone bolt              | Cold form steel or free cutting steel                            |                                                                                                 |  |  |  |  |  |
| 3                  | Filling adapter        | Plastic                                                          |                                                                                                 |  |  |  |  |  |
| 4                  | Filling conical washer | Cold form stool or free cutting stool                            | 0                                                                                               |  |  |  |  |  |
| 5                  | Spherical washer       | Cold form steel or free cutting steel                            | Stainless steel<br>EN 10088:2014                                                                |  |  |  |  |  |
| 6                  | Washer                 | Cold strip, EN 10139:2016                                        | LIN 10000.2014                                                                                  |  |  |  |  |  |
| 7                  | Hexagon nut            | Steel, property class min. 8,<br>EN ISO 898-2:2012               | Stainless steel EN 10088:2014;<br>ISO 3506-2:2018;<br>property class – min. 70                  |  |  |  |  |  |
| 8                  | Lock nut               | Cold strip, EN 10139:2016                                        | Stainless steel<br>EN 10088:2014                                                                |  |  |  |  |  |
|                    | Injection cartridge    | Mortar, hardener, filler (compressive strength ≥ 50 N/mm²)       |                                                                                                 |  |  |  |  |  |

| fischer Bolt Anchor FAZ II Plus dynamic |           |
|-----------------------------------------|-----------|
| Product description Materials           | Annex A 3 |



| Specifications of intended use                                                                     |                                            |     |     |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------|-----|-----|--|--|--|--|--|
| Fastenings subject to:                                                                             |                                            |     |     |  |  |  |  |  |
| Size                                                                                               | FAZ II Plus dynamic, FAZ II Plus dynamic R |     |     |  |  |  |  |  |
| OIZC                                                                                               | M16                                        | M20 | M24 |  |  |  |  |  |
| Hammer drilling with standard drill bit                                                            |                                            |     |     |  |  |  |  |  |
| Hammer drilling with hollow drill bit with automatic cleaning                                      |                                            | ✓   |     |  |  |  |  |  |
| Static and quasi-static loading in cracked and uncracked concrete                                  |                                            | ✓   |     |  |  |  |  |  |
| Seismic actions category C1 and C2  – not in combination with fatigue loading                      |                                            | ✓   |     |  |  |  |  |  |
| Fire exposure  – not in combination with fatigue loading                                           |                                            | ✓   |     |  |  |  |  |  |
| Fatigue load in cracked and uncracked concrete  – not in combination with seismic- or fire exosure |                                            | ✓   |     |  |  |  |  |  |
|                                                                                                    |                                            |     |     |  |  |  |  |  |

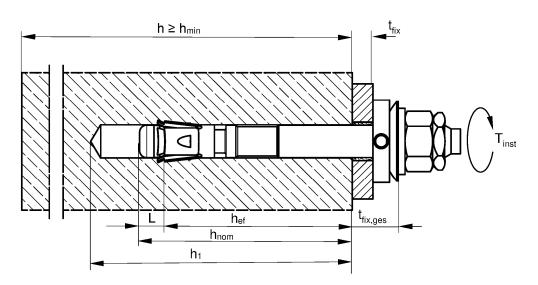
#### Base materials:

- Compacted reinforced and unreinforced normal weight concrete without fibres (cracked and uncracked) according to EN 206:2013+A2:2021
- Strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (FAZ II Plus dynamic, FAZ II Plus dynamic R)
- For all other conditions according to EN 1993-1-4:2006 + A1:2015 corresponding to corrosion resistance class CRC III: for FAZ II Plus dynamic R

### Design:


- Fastenings are to be designed under the responsibility of an engineer experienced in fastenings and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
  position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to reinforcement
  or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and EOTA Technical Report TR 061: 2020-08 "Design method for fasteners in concrete under fatigue cyclic loading"
- Fastenings in stand-off installation according to EN 1992-4:2018, 6.2.2.3 are not covered by this European Technical Assessment
- Fatigue design cannot be done in combination with seismic- or fire exposure

| fischer Bolt Anchor FAZ II Plus dynamic |           |
|-----------------------------------------|-----------|
| Intended use<br>Specifications          | Annex B 1 |



| Table B2.1: Installation parameters                 |                        |        |                                        |                       |                       |  |  |  |  |  |
|-----------------------------------------------------|------------------------|--------|----------------------------------------|-----------------------|-----------------------|--|--|--|--|--|
| 0:                                                  |                        |        | FAZ II Plus dynamic, FAZ II Plus dynam |                       |                       |  |  |  |  |  |
| Size                                                |                        |        | M16                                    | M20                   | M24                   |  |  |  |  |  |
| Nominal drill hole diameter                         | $d_0 =$                |        | 16                                     | 20                    | 24                    |  |  |  |  |  |
| Maximum bit diameter with hammer or hollow drilling | d <sub>cut,max</sub>   | [mm]   | 16,50                                  | 20,55                 | 24,55                 |  |  |  |  |  |
| Effective embedment depth                           | h <sub>ef</sub> ≥      | _      | 65 - 160                               | 100 - 180             | 125                   |  |  |  |  |  |
| Length from hef to end of cone bolt                 | L                      | -<br>[ | 17,5                                   | 20,0                  | 23,5                  |  |  |  |  |  |
| Overall fastener embedment depth in the concrete    | h <sub>nom</sub> ≥     | - [mm] |                                        | h <sub>ef</sub> + L   |                       |  |  |  |  |  |
| Depth of drill hole to deepest point                | h <sub>1</sub> ¹) ≥    | _      | h <sub>nom</sub> + 5                   | h <sub>nom</sub> +    | - 10                  |  |  |  |  |  |
| Diameter of clearance hole in the fixture           | $d_{f} \leq$           | [mm]   | 18                                     | 22                    | 26                    |  |  |  |  |  |
| Required setting torque                             | T <sub>inst</sub> =    | [Nm]   | 110                                    | 200                   | 270                   |  |  |  |  |  |
| Minimum thickness of the fixture                    | t <sub>fix,min</sub> ≥ | - [mm] | 15                                     | 20                    | 24                    |  |  |  |  |  |
| Thickness of the fixture                            | tfix des =             | - [mm] | t <sub>fix</sub> + 11                  | t <sub>fix</sub> + 13 | t <sub>fix</sub> + 17 |  |  |  |  |  |

 $<sup>^{1)}</sup>$  For the application without drill hole cleaning:  $h_{1,nc} = h_1 + 15 \text{ mm}$ 



 $h_{ef}$  = Effective embedment depth

 $t_{fix}$  = Thickness of the fixture

 $t_{fix,ges}$  = Thickness of the fixture and the filling set

 $h_1$  = Depth of drill hole to deepest point

 $h_{1,nc}$  = Depth of drill hole to deepest point witout cleaning

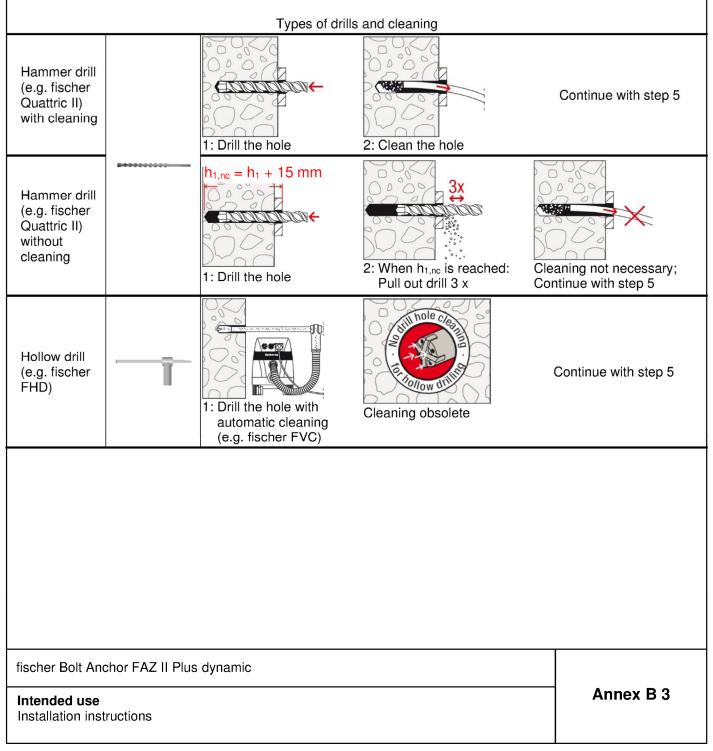
h = Thickness of the concrete member
h<sub>min</sub> = Minimum thickness of concrete member

 $h_{nom}$  = Overall fastener embedment depth in the concrete

 $T_{inst}$  = Required setting torque

L = Length from hef to end of cone bolt

(Fig. not to scale)


| fischer Bolt Anchor FAZ II Plus dynamic |           |
|-----------------------------------------|-----------|
| Intended use Installation parameters    | Annex B 2 |



#### Installation instructions:

- Fastener installation carried out by appropriately qualified personnel according to the design drawings and under the supervision of the person responsible for technical matters on the site
- · Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Hammer- or hollow drilling according to Annex B 2
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application

### Installation instructions: Drilling and cleaning the hole





| Installation instructions: Installation of the fastener |                                                                                                                                                                                                          |               |  |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
|                                                         | 5: Check the position of the conical washer                                                                                                                                                              |               |  |  |  |  |  |  |
|                                                         | 6: Set the fastener. E.g. with fischer FA-ST II setting tool:                                                                                                                                            |               |  |  |  |  |  |  |
| Tinst                                                   | 7: Apply T <sub>inst</sub>                                                                                                                                                                               |               |  |  |  |  |  |  |
|                                                         | 8: Tighten lock nut manually, then use wrench to give another quarter turn                                                                                                                               |               |  |  |  |  |  |  |
|                                                         | 9: The gap between anchor and fixture (annular gap) must be filled with mortar (compressive strength ≥ 50 N/mm² e.g. fischer FIS HB, FIS V Plus, FIS EM Plus or FIS SB) via the fillable conical washer. |               |  |  |  |  |  |  |
| t <sub>fix</sub> ,ges                                   | 10: Correctly installed fastener                                                                                                                                                                         |               |  |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                          |               |  |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                          |               |  |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                          |               |  |  |  |  |  |  |
| fischer Bolt Anchor FA                                  | Z II Plus dynamic                                                                                                                                                                                        |               |  |  |  |  |  |  |
| Intended use<br>Installation instructions               | s                                                                                                                                                                                                        | Annex B 4     |  |  |  |  |  |  |
| 725626.22                                               |                                                                                                                                                                                                          | 0.06.04.24/02 |  |  |  |  |  |  |



| Table C1.1: (                                                                                               | naracterist              | ic values d        | of tension        | n resistance unde |                                     |         |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|-------------------|-------------------|-------------------------------------|---------|--|
|                                                                                                             | Size                     |                    |                   |                   | dynamic, FAZ II Plu                 |         |  |
|                                                                                                             | 0,20                     |                    |                   | M16               | M20                                 | M24     |  |
| Steel failure                                                                                               |                          |                    |                   |                   |                                     |         |  |
| Characteristic                                                                                              | FAZ II Plus<br>dynamic   | N <sub>R</sub>     | ,s [kN]           | 78,7              | 108,4                               | 180,0   |  |
| resistance                                                                                                  | FAZ II Plus<br>dynamic R | IVA                | ,s [NV]           | 83,0              | 127,6                               | 187,0   |  |
| Partial factor for                                                                                          | FAZ II Plus<br>dynamic   | γ <sub>Ms</sub>    | <sup>1)</sup> [-] | 1,40              | 1,40                                | 1,50    |  |
| steel failure                                                                                               | FAZ II Plus<br>dynamic R | YIVIS              | , []              | 1,10              | 1,45                                | 1,00    |  |
| Pullout failure                                                                                             |                          |                    |                   |                   |                                     |         |  |
| Effective embedn<br>calculation                                                                             | •                        | h <sub>ef</sub>    | [mm]              | 65 - 160          | 100 - 180                           | 125     |  |
| Characteristic resistance in cracked concrete C20/25 Characteristic resistance in uncracked concrete C20/25 |                          | $N_{Rk,p}$         | [kN]              | 27,0              | 34,4                                | 48,1    |  |
|                                                                                                             |                          | (C20/25)           | נאואן             | 38,6              | 49,2                                | 68,8    |  |
|                                                                                                             |                          | -                  | C25/30            |                   | 1,12                                |         |  |
| Increasing factor                                                                                           | ψc for                   | -<br>[-] -<br>-    | C30/37            | 1,22              |                                     |         |  |
| cracked or uncrac                                                                                           | cked                     |                    | C35/45            | 1,32              |                                     |         |  |
| concrete                                                                                                    |                          |                    | C40/50            | 1,41<br>1,50      |                                     |         |  |
| $N_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (                                                                        | C20/25)                  |                    | C45/55            |                   |                                     |         |  |
|                                                                                                             |                          |                    | C50/60            | 1,58              |                                     |         |  |
| Installation sensit                                                                                         | ivity factor             | γinst              | [-]               |                   | 1,0                                 |         |  |
| Concrete cone a                                                                                             | nd splitting             | failure            |                   |                   |                                     |         |  |
| Factor for uncrac                                                                                           | ked concrete             | k <sub>ucr,N</sub> | [.1               |                   | 11,0 <sup>2)</sup>                  |         |  |
| Factor for cracked                                                                                          | d concrete               | k <sub>cr,N</sub>  | [-]               |                   | 7,72)                               |         |  |
| Characteristic spa                                                                                          | acing                    | S <sub>cr,N</sub>  | [mm]              |                   | 3 ⋅ h <sub>ef</sub>                 |         |  |
| Characteristic ed                                                                                           | ge distance              | Ccr,N              | [mm]              |                   | 1,5 ⋅ h <sub>ef</sub>               |         |  |
| Characteristic spa<br>for splitting failure                                                                 | !                        | S <sub>cr,sp</sub> | [mm]              |                   | 2 · C <sub>cr,sp</sub>              |         |  |
| Characteristic ed<br>distance<br>for splitting failure                                                      | ≥ 160<br>≥ 200           | Ccr,sp             | [mm]              | 2·h <sub>ef</sub> | 2,4·h <sub>ef</sub>                 | 2,2·hef |  |
| Characteristic res<br>to splitting                                                                          | istance                  | $N^0$ Rk,sp        | [kN]              |                   | min $\{N^0_{Rk,c}; N_{Rk,p}\}^{3)}$ |         |  |

| fischer Bolt Anchor FAZ II Plus dynamic                                                       |           |
|-----------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension resistance under static and quasi-static action | Annex C 1 |

 <sup>1)</sup> In absence of other national regulations
 2) Based on concrete strength as cylinder strength
 3) Nº<sub>Bk,c</sub> according to EN 1992-4:2018

<sup>4)</sup> No performance assessed



| Cino                         |                                            |                                     | FAZ II Plus dynamic, FAZ II Plus dynamic |                 |       |  |
|------------------------------|--------------------------------------------|-------------------------------------|------------------------------------------|-----------------|-------|--|
| Size                         |                                            |                                     | M16                                      | M20             | M24   |  |
| Steel failure without lev    | er arm                                     |                                     |                                          |                 |       |  |
| Characteristic FAZ II P      | us dynamic with filling                    | \/0 [L\]                            | 69,8                                     | 85,6            | 128,3 |  |
| resistance FAZ II P          | us dynamic with filling R                  | V <sup>0</sup> <sub>Rk,s</sub> [kN] | 73,6                                     | 117,9           | 158,1 |  |
| Partial factor for steel fai | lure                                       | γMs <sup>1)</sup>                   |                                          | 1,25            |       |  |
| Factor for ductility         |                                            | $\frac{r^{\text{NIS}}}{k_7}$ [-]    |                                          | 1,0             |       |  |
| Steel failure with lever     | arm and Concrete pryou                     | t failure                           |                                          |                 |       |  |
| Effective embedment de       | pth for calculation                        | h <sub>ef</sub> [mm]                | 85 - 160                                 | 100 - 180       | 125   |  |
| Characteristic bending       | FAZ II Plus dynamic                        | MOINJ                               | 266                                      | 422             | 864   |  |
| resistance                   | FAZ II Plus dynamic R                      | M <sup>0</sup> <sub>Rk,s</sub> [Nm] | 256                                      | 519             | 898   |  |
| Factor for pryout failure    |                                            | k <sub>8</sub> [-]                  |                                          | 3,2             |       |  |
| Effective embedment de       | pth for calculation                        | h <sub>ef</sub> [mm]                | 65 - < 85                                |                 |       |  |
| Characteristic bending       | FAZ II Plus dynamic                        | [col/1] -01/A                       | 251                                      | _2)             |       |  |
| resistance                   | FAZ II Plus dynamic R                      | M <sup>0</sup> <sub>Rk,s</sub> [Nm] | 256                                      |                 |       |  |
| Factor for pryout failure    |                                            | k <sub>8</sub> [-]                  | 3,2                                      |                 |       |  |
| Partial factor for steel fai | lure                                       | γ <sub>Ms</sub> 1)                  | 1,25                                     |                 |       |  |
| Factor for ductility         | $\frac{7 \text{ N/S}^{+}}{\text{k}_7}$ [-] |                                     | 1,0                                      |                 |       |  |
| Concrete edge failure        |                                            |                                     |                                          |                 |       |  |
| Effective embedment de       | oth for calculation                        | I <sub>f</sub> [mm]                 |                                          | h <sub>ef</sub> |       |  |
| Outside diameter of a fa     | stener                                     | d <sub>nom</sub>                    | 16                                       | 20              | 24    |  |

<sup>1)</sup> In absence of other national regulations

| fischer Bolt Anchor FAZ II Plus dynamic                                                     |           |
|---------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of shear resistance under static and quasi-static action | Annex C 2 |

<sup>&</sup>lt;sup>2)</sup> No performance assessed



**Table C3.1:** Characteristic values of **tension** resistance under **fire exposure** – not in combination with fatigue loading

| 0:                                        | Sizo                     |                      |                     |      |                                                                             |                                                                                                 | FAZ II Plus dynamic, FAZ II Plus dynamic R |      |  |  |  |
|-------------------------------------------|--------------------------|----------------------|---------------------|------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|------|--|--|--|
| Size                                      |                          |                      |                     |      | M16                                                                         |                                                                                                 | M20                                        | M24  |  |  |  |
|                                           |                          |                      | h <sub>ef</sub> ≥ [ | mm]  | 65 - < 85                                                                   | 85 - 160                                                                                        | 100 - 180                                  | 125  |  |  |  |
|                                           |                          |                      | R30                 |      | 9,                                                                          | 4                                                                                               | 14,7                                       | 21,1 |  |  |  |
|                                           | FAZ II Plus              | NI                   | R60                 |      | 7,                                                                          | 7                                                                                               | 12,0                                       | 17,3 |  |  |  |
|                                           | dynamic                  | N <sub>Rk,s,fi</sub> | R90                 |      | 6,                                                                          | 0                                                                                               | 9,4                                        | 13,5 |  |  |  |
| Characteristic resistance                 | -                        |                      | R120                | 20   | 5,                                                                          | 2                                                                                               | 8,1                                        | 11,6 |  |  |  |
| steel failure                             | FAZ II Plus<br>dynamic R | _                    | R30                 |      | 21                                                                          | ,8                                                                                              | 34,3                                       | 49,4 |  |  |  |
| Steer landre                              |                          | $N_{Rk,s,fi}$        | R60<br>R90          | 13   | ,2                                                                          | 20,7                                                                                            | 29,3                                       |      |  |  |  |
|                                           |                          |                      |                     | 10   | ,5                                                                          | 18,3                                                                                            | 26,4                                       |      |  |  |  |
|                                           |                          |                      | R120                | [kN] | 8,                                                                          | 6                                                                                               | 17,3                                       | 25,0 |  |  |  |
| Characteristic                            |                          | N <sub>Rk,c,fi</sub> | R30<br>- R90        |      | $7,7 \cdot h_{ef}{}^{1,5} \cdot (20){}^{0,5} \cdot h_{ef}  /  200  /  1000$ |                                                                                                 |                                            |      |  |  |  |
| Concrete cont                             | Concrete cone failure    |                      | R120                |      |                                                                             | 7,7 · h <sub>ef</sub> <sup>1,5</sup> · (20) <sup>0,5</sup> · h <sub>ef</sub> / 200 / 1000 · 0,8 |                                            |      |  |  |  |
| Characteristic resistance pullout failure |                          | -                    | R30                 |      |                                                                             |                                                                                                 |                                            |      |  |  |  |
|                                           |                          | N <sub>Rk,p,fi</sub> | R60<br>R90          |      | 4,5                                                                         | 6,8                                                                                             | 8,6                                        | 12,0 |  |  |  |
|                                           |                          | -                    | R120                |      | 3,6                                                                         | 5,4                                                                                             | 6,9                                        | 9,6  |  |  |  |

**Table C3.2:** Characteristic values of **shear** resistance under **fire exposure** – not in combination with fatigue loading

|                     |                   |     |      | R                               | 30                                           | R                                | 60                                           |
|---------------------|-------------------|-----|------|---------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|
| FAZ II Plus o       | dynamic           |     |      | V <sub>Rk,s,fi,30</sub><br>[kN] | M <sup>0</sup> <sub>Rk,s,fi,30</sub><br>[Nm] | V <sub>Rk,s,fi,60</sub><br>[kN]  | M <sup>0</sup> <sub>Rk,s,fi,60</sub><br>[Nm] |
| M16                 |                   | 65  |      | 11,7                            | 19,9                                         | 9,1                              | 16,3                                         |
| M20                 | h <sub>ef</sub> ≥ | 100 | [mm] | 18,2                            | 39,0                                         | 14,2                             | 31,8                                         |
| M24                 | _                 | 125 |      | 26,3                            | 67,3                                         | 20,5                             | 55,0                                         |
|                     |                   |     |      | R                               | 90                                           | R120                             |                                              |
| FAZ II Plus dynamic |                   |     |      | V <sub>Rk,s,fi,90</sub><br>[kN] | M <sup>0</sup> Rk,s,fi,90<br>[Nm]            | V <sub>Rk,s,fi,120</sub><br>[kN] | M <sup>0</sup> Rk,s,fi,120<br>[Nm]           |
| M16                 |                   | 65  |      | 6,6                             | 12,6                                         | 5,3                              | 11,0                                         |
| M20                 | h <sub>ef</sub> ≥ | 100 | [mm] | 10,3                            | 24,6                                         | 8,3                              | 21,4                                         |
| M24                 | ]                 | 125 | _    | 14,8                            | 42,6                                         | 11,9                             | 37,0                                         |

Concrete pryout failure according to EN 1992-4:2018

| fischer Bolt Anchor FAZ II Plus dynamic                              |           |
|----------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance under fire exposure | Annex C 3 |

M24



25,0

79,4

**Table C4.1:** Characteristic values of **shear** resistance under **fire exposure** – not in combination with fatigue loading

| EAZ II Diug           | d. mamia          | . D                   |                                | R3                            | 0                                         | R60                   |                                           |  |
|-----------------------|-------------------|-----------------------|--------------------------------|-------------------------------|-------------------------------------------|-----------------------|-------------------------------------------|--|
| FAZ II Plus           | иупаппо           | ; n                   |                                | $V_{Rk,s,fi,30}$ [kN]         | M <sup>0</sup> <sub>Rk,s,fi,30</sub> [Nm] | $V_{Rk,s,fi,60}$ [kN] | M <sup>0</sup> <sub>Rk,s,fi,60</sub> [Nm] |  |
| M16                   | 65                |                       | 21,8                           | 46,2                          | 13,2                                      | 27,9                  |                                           |  |
| M20                   | h <sub>ef</sub> ≥ | 100                   | [mm]                           | 34,3                          | 90,9                                      | 20,7                  | 54,9                                      |  |
| M24                   |                   | 125                   |                                | 49,4                          | 157,2                                     | 29,3                  | 93,1                                      |  |
| E47 !! Dive           | d i -             | Б                     |                                | R9                            | 00                                        | R120                  |                                           |  |
| FAZ II Plus dynamic R |                   | $V_{Rk,s,fi,90}$ [kN] | M <sup>0</sup> Rk,s,fi,90 [Nm] | V <sub>Rk,s,fi,120</sub> [kN] | M <sup>0</sup> Rk,s,fi,120 [Nm]           |                       |                                           |  |
| M16                   |                   | 65                    |                                | 10,5                          | 22,1                                      | 8,6                   | 18,3                                      |  |
| M20                   | h <sub>ef</sub> ≥ | 100                   | [mm]                           | 18,3                          | 48,6                                      | 17,3                  | 45,9                                      |  |

Concrete pryout failure according to EN 1992-4:2018

**Table C4.2:** Minimum spacings and minimum edge distances of fasteners under **fire exposure** for **tension** and **shear** load

26,4

84,0

| Ci=o          |      |  | FAZ II Plus dynamic, FAZ II Plus dynamic R |                             |                             |  |  |
|---------------|------|--|--------------------------------------------|-----------------------------|-----------------------------|--|--|
| Size          |      |  | M16                                        | M20                         | M24                         |  |  |
| Spacing       | Smin |  | Annex C5                                   |                             |                             |  |  |
| Edgo distance | [mn  |  |                                            | $c_{min} = 2 \cdot h_{ef}$  |                             |  |  |
| Edge distance | Cmin |  | for fire exposi                            | ure from more than one side | e c <sub>min</sub> ≥ 300 mm |  |  |

fischer Bolt Anchor FAZ II Plus dynamic

Performances
Characteristic values of resistance under fire exposure

Annex C 4



**Table C5.1:** Minimum thickness of concrete members, minimum spacing and minimum edge distance

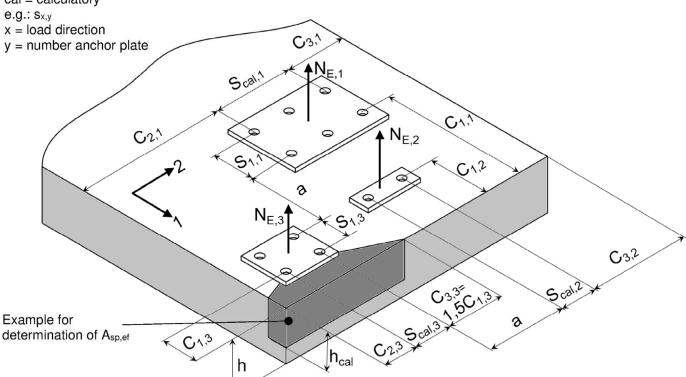
| Ci                                   |                       |         | FAZ II Plus dynamic, FAZ II Plus dynamic R           |                      |       |  |  |
|--------------------------------------|-----------------------|---------|------------------------------------------------------|----------------------|-------|--|--|
| Size                                 |                       |         | M16                                                  | M20                  | M24   |  |  |
| Minimum edge distance                |                       |         |                                                      |                      |       |  |  |
| Uncracked concrete                   | _ ^ .                 |         | 65                                                   | 95                   | 135   |  |  |
| Cracked concrete                     | — C <sub>min</sub>    |         | 65                                                   | 85                   | 100   |  |  |
| Corresponding spacing                | S                     | [mm]    |                                                      | according to Annex C | 6     |  |  |
| Minimum thickness of concrete member | $h_{min}$             | [,,,,,, | 140                                                  | 160                  | 200   |  |  |
| Thickness of concrete member         |                       |         | max. $\{h_{min}; 1,5 \cdot h_{ef}; h_1^{1}\}$        |                      |       |  |  |
| Minimum spacing                      |                       |         |                                                      |                      |       |  |  |
| Uncracked concrete                   | _ 6:                  |         | 65                                                   | 95                   | 100   |  |  |
| Cracked concrete                     | — Smin                |         | 00                                                   | 90                   | 100   |  |  |
| Corresponding edge distance          | С                     | [mm]    | according to Annex C 6                               |                      |       |  |  |
| Minimum thickness of concrete member | $h_{min}$             |         | 140                                                  | 160                  | 200   |  |  |
| Thickness of concrete member h ≥     |                       |         | max. $\{h_{min}; 1,5 \cdot h_{ef}; h_1^{(1)} + 30\}$ |                      |       |  |  |
| Minimum splitting area               |                       |         |                                                      |                      |       |  |  |
| Uncracked concrete                   | ^                     | [·1000  | 67                                                   | 100                  | 117,5 |  |  |
| Cracked concrete                     | — A <sub>sp,req</sub> | mm²]    | 50                                                   | 77                   | 87,5  |  |  |

<sup>1)</sup> Or h<sub>1,nc</sub> if borehole cleaning is omitted

**Table C5.2**: Calculated values for minimum spacing and minimum edge distances for cracked concrete with one edge ( $c_2$  and  $c_3 \ge 1,5$   $c_1$ ) in the cleaned borehole

| Type of angles /                     | ype of anchor / size      |     | FAZ II Plus dynamic, FAZ II Plus dynamic R |     |     |  |  |  |
|--------------------------------------|---------------------------|-----|--------------------------------------------|-----|-----|--|--|--|
| Type of afferior / s                 | M16                       |     | M20                                        | M24 |     |  |  |  |
| Effective anchorage depth            | $h_{\text{ef}} \geq [mm]$ | 65  | 85                                         | 100 | 125 |  |  |  |
| Minimum thickness of concrete member | h > lmml l                |     | 180                                        | 160 | 200 |  |  |  |
|                                      |                           |     |                                            |     |     |  |  |  |
| Minimum angoing                      | s <sub>min</sub> [mm]     | 6   | 5                                          | 95  | 100 |  |  |  |
| Minimum spacing -                    | for $c \ge [mm]$          | 100 | 75                                         | 130 | 115 |  |  |  |
| Minimum edge distance                | c <sub>min</sub> [mm]     | 6   | 5                                          | 85  | 100 |  |  |  |
| Willimum edge distance               | for $s \ge [mm]$          | 165 | 85                                         | 230 | 140 |  |  |  |

| fischer Bolt Anchor FAZ II Plus dynamic                                       |           |
|-------------------------------------------------------------------------------|-----------|
| Performances Minimum thickness of member, minimum spacings and edge distances | Annex C 5 |




### Determination of A<sub>sp,ef</sub> for each existing free edge

Splitting failure applied for minimum edge distance and spacing in depending on her

**Definition Index:** 

cal = calculatory



Example for different anchor plates: For considering all free edges the direction 1 and 2 must be swaped.

General formulation for each free edge:  $A_{sp,ef} = (c_2 + s_{cal} + c_3) \cdot h_{cal} \ge (n/2) \cdot A_{sp,reg}$ 

with:

Edge distance c<sub>1</sub>: c<sub>min</sub> ≤ c<sub>1</sub>

Edge distance  $c_2$ :  $c_{min} \le c_2 \le 1.5 \cdot c_1$ 

Edge distance  $c_3$ :  $c_{min} \le c_3 \le 1,5 \cdot c_1$ 

Calculation spacing, distance between outer anchors  $s_{cal}$ :  $s_{min} \le s_{cal} \le 3,0 \cdot c_1$ 

Distance between group of anchors a: For  $a \ge 3.0$  c<sub>1</sub> no influence between the anchor groups is taken into account.

Number of anchors n of an anchor plate as well close and parallel to the edge

Effective member thickness  $h_{cal}$ :  $h_{min} \le h$ ;  $h_{cal} \le h$ ;  $h_{cal} \le (h_{ef} + 1.5 \cdot c_1)$ 

c<sub>1</sub>, c<sub>2</sub>, c<sub>3</sub>, h and s<sub>cal</sub> have to be set in way that the requirement is fullfiled

For the calculation of minimum spacing and minimum edge distance of fasteners in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:

$$A_{sp,req} < A_{sp,ef}$$

A<sub>sp,req</sub> = required splitting area (according to Annex C 5)

 $A_{sp,ef}$  = effective splitting area

(Fig. not to scale)

fischer Bolt Anchor FAZ II Plus dynamic Annex C 6 **Performances** Minimum thickness of member, minimum spacings and edge distances



1,25

|                                                  |                                       |                            |           | <b>and shear</b> resistan<br>n with fatigue loa | ance under <b>seismi</b><br>ding | c action  |
|--------------------------------------------------|---------------------------------------|----------------------------|-----------|-------------------------------------------------|----------------------------------|-----------|
|                                                  | -                                     |                            |           | FAZ II Plus                                     | dynamic, FAZ II Plus             | dynamic R |
| Size                                             |                                       |                            |           | M16                                             | M20                              | M24       |
| Effective embed                                  | lment depth                           | h <sub>ef</sub>            | [mm]      | 85 - 160                                        | 100 - 180                        | 125       |
| With filling of the                              | e annular gap                         | $lpha_{	extsf{gap}}$       | [-]       |                                                 | 1,0                              |           |
| Steel failure N <sub>R</sub>                     | $_{k,s,C1} = N_{Rk,s}; \gamma_{Ms,C}$ | 1 = γ <sub>Ms</sub> (see A | nnex C    | 1)                                              |                                  |           |
|                                                  |                                       |                            |           |                                                 |                                  |           |
| Pullout failure                                  |                                       |                            |           |                                                 |                                  |           |
| Characteristic resistance in cracked concrete C1 |                                       | [kN]                       | 27,0      | 34,4                                            | 48,1                             |           |
| Installation sens                                | itivity factor                        | γinst                      | [-]       |                                                 | 1,0                              |           |
| Concrete cone                                    | failure and splitt                    | ing failure N <sub>F</sub> | Rk,c,C1 = | $N_{Rk,c}$ ; $N_{Rk,sp,C1} = N_R^0$             | <sub>k,sp</sub> (see Annex C1)   |           |
|                                                  |                                       |                            |           |                                                 |                                  |           |
| Steel failure wit                                | thout lever arm                       |                            |           |                                                 |                                  |           |
|                                                  |                                       |                            |           | FAZ II Plus d                                   | ynamic                           |           |
|                                                  |                                       | h <sub>et</sub>            | [mm]      | 85 - 160                                        | 100 - 180                        | 125       |
| Characteristic                                   | With filling                          | $V_{Rk,s,C1}$              | [kN]      | 59,3                                            | 85,6                             | 102,6     |
| resistance C1                                    |                                       |                            |           | FAZ II Plus dy                                  | namic R                          |           |
|                                                  |                                       | h <sub>ef</sub>            | [mm]      | 85 - 160                                        | 100 - 180                        | 125       |
|                                                  | With filling                          | $V_{Rk,s,C1}$              | [kN]      | 62,6                                            | 94,3                             | 126,5     |
|                                                  |                                       |                            |           |                                                 |                                  |           |

 $\gamma_{\text{Ms,C1}}{}^{1)}$ 

[-]

Partial factor for steel failure

| fischer Bolt Anchor FAZ II Plus dynamic                                                             |           |
|-----------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension and shear resistance under seismic action category C1 | Annex C 7 |

<sup>1)</sup> In absence of other national regulations



|                                                       |                          | <u>,                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | nation with fatigue<br>FAZ II Plus                                                  | s dynamic, FAZ II Plus                                         | dynamic R                         |
|-------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|
| Size                                                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M16                          | M20                                                                                 | M24                                                            |                                   |
| With filling of the a                                 | nnular gap               | α <sub>gap</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [-]                          |                                                                                     | 1,0                                                            |                                   |
| Steel failure N <sub>RI</sub>                         | c,s,C2 = N <sub>RI</sub> | $_{k,s}$ ; $\gamma_{Ms,C2} = \gamma_{Ms}$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | see Anr                      | nex C1)                                                                             |                                                                |                                   |
|                                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                                                                     |                                                                |                                   |
| Pullout failure                                       |                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                                                                     |                                                                |                                   |
| Characteristic                                        | _                        | h <sub>ef</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [mm]                         | 85 - 160                                                                            | 100 - 180                                                      | 125                               |
| resistance in cra                                     | cked -                   | N <sub>Rk,p,C2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [kN]                         | 21,5                                                                                | 30,7                                                           | 39,6                              |
| concrete C2                                           | _                        | h <sub>ef</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [mm]                         | 65 - <85                                                                            | _2)                                                            |                                   |
| N <sub>Rk,p,C2</sub> [kN]                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16,4                         |                                                                                     |                                                                |                                   |
| Installation sensitivity factor γ <sub>inst</sub> [-] |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                                                                     | 1,0                                                            |                                   |
| Concrete cone                                         | failure an               | id splitting fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ure $N_{Rk,0}$               | $_{\mathrm{c.C2}} = N^{0}_{\mathrm{Rk.c}}; N_{\mathrm{Rk.sp.C2}} =$                 | = N <sup>0</sup> <sub>Rk,sp</sub> (see Annex C1)               | )                                 |
|                                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                            | -,,                                                                                 | ,- - (                                                         | /                                 |
|                                                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                             | ,                                                              | ,                                 |
| Steel failure witl                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | ,                                                                                   |                                                                | ,                                 |
| Steel failure witl                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                                                                     | lus dynamic                                                    |                                   |
| Steel failure witl                                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [mm]                         |                                                                                     |                                                                | 125                               |
| Steel failure witl<br>_<br>_<br>_                     |                          | r arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | FAZ II PI                                                                           | us dynamic                                                     |                                   |
| Steel failure witl<br>_<br>_<br>_                     | nout leve                | <b>r arm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [mm]                         | <b>FAZ II P</b> I<br>85 - 160                                                       | 100 - 180<br>68,5                                              | 125<br>102,6                      |
| _<br>_<br>_<br>_                                      | nout leve                | r arm $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | [mm]<br>[kN]                 | <b>FAZ II P</b> I<br>85 - 160<br>52,4                                               | lus dynamic<br>100 - 180                                       | 125<br>102,6                      |
| Steel failure witl                                    | nout leve                | r arm  hef filling V <sub>Rk,s,C2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [mm]<br>[kN]<br>[mm]         | FAZ II PI<br>85 - 160<br>52,4<br>65 - <85<br>52,4                                   | lus dynamic<br>100 - 180<br>68,5                               | 125<br>102,6                      |
|                                                       | nout leve                | r arm $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | [mm]<br>[kN]<br>[mm]         | FAZ II PI<br>85 - 160<br>52,4<br>65 - <85<br>52,4                                   | 100 - 180<br>68,5                                              | 125<br>102,6                      |
|                                                       | nout leve                | $\begin{array}{c} \textbf{r arm} \\ & h_{ef} \\ \hline \text{filling } V_{Rk,s,C2} \\ & h_{ef} \\ \hline \text{filling } V_{Rk,s,C2} \\ \\ & h_{ef} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [mm]<br>[kN]<br>[mm]<br>[kN] | FAZ II PI<br>85 - 160<br>52,4<br>65 - <85<br>52,4<br>FAZ II PIL                     | us dynamic<br>100 - 180<br>68,5<br>2<br>us dynamic R           | 125<br>102,6                      |
|                                                       | With                     | $\begin{array}{c} \textbf{r arm} \\ & h_{ef} \\ \text{filling} & V_{Rk,s,C2} \\ & h_{ef} \\ \text{filling} & V_{Rk,s,C2} \\ \\ & h_{ef} \\ \text{filling} & V_{Rk,s,C2} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [mm]<br>[kN]<br>[mm]<br>[kN] | FAZ II PI<br>85 - 160<br>52,4<br>65 - <85<br>52,4<br>FAZ II PIL<br>85 - 160<br>55,2 | 100 - 180<br>68,5<br>- 2<br>Is dynamic R<br>100 - 180<br>104,9 | 125<br>102,6<br>)<br>125<br>126,5 |
|                                                       | With                     | $\begin{array}{c} \textbf{r arm} \\ & h_{ef} \\ \hline \text{filling } V_{Rk,s,C2} \\ & h_{ef} \\ \hline \text{filling } V_{Rk,s,C2} \\ \\ & h_{ef} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [mm]<br>[kN]<br>[mm]<br>[kN] | FAZ II PI<br>85 - 160<br>52,4<br>65 - <85<br>52,4<br>FAZ II PIU<br>85 - 160         | 100 - 180<br>68,5<br>                                          | 125<br>102,6<br>)<br>125<br>126,5 |

<sup>&</sup>lt;sup>2)</sup> No performance assessed

| fischer Bolt Anchor FAZ II Plus dynamic                                                    |           |
|--------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of tension and shear resistance under seismic action C2 | Annex C 8 |



| Table C9.1: Displacements under static and quasi static tension loads |                         |                |                                            |      |      |  |  |
|-----------------------------------------------------------------------|-------------------------|----------------|--------------------------------------------|------|------|--|--|
| Ciro                                                                  | Size                    |                | FAZ II Plus dynamic, FAZ II Plus dynamic R |      |      |  |  |
| Size                                                                  |                         |                | M16                                        | M20  | M24  |  |  |
| Displacement – factor for tensile load <sup>1)</sup>                  |                         |                |                                            |      |      |  |  |
| $\delta_{\text{N0}}$ - factor                                         | in cracked concrete     |                | 0,08                                       | 0,07 | 0,05 |  |  |
| δ <sub>N∞</sub> - factor                                              | — in cracked concrete   | - [mm/kN]      | 0,0                                        | 09   | 0,07 |  |  |
| $\delta_{\text{N0}}$ - factor                                         | _ in uncracked concrete | - [IIIIII/KIN] | 0,06                                       | 0,05 | 0,04 |  |  |
| δ <sub>N∞</sub> - factor                                              |                         |                | 0,10                                       | 0,06 | 0,05 |  |  |

Table C9.2: Displacements under static and quasi static shear loads

| Size                        |                                                    |         | M16  | M20                   | M24      |  |  |  |
|-----------------------------|----------------------------------------------------|---------|------|-----------------------|----------|--|--|--|
| Displacement                | Displacement – factor for shear load <sup>2)</sup> |         |      |                       |          |  |  |  |
|                             |                                                    |         |      | FAZ II Plus dynamic   |          |  |  |  |
| δ <sub>v0</sub> - factor    |                                                    |         | 0,10 | 0,09                  | 0,07     |  |  |  |
| $\delta_{V\infty}$ - factor |                                                    |         | 0,14 | 0,15                  | 0,11     |  |  |  |
|                             | in cracked or<br>uncracked concrete                | [mm/kN] |      | FAZ II Plus dynamic F | <b>R</b> |  |  |  |
| δvo - factor                | undradiced condicted                               |         | 0,10 | 0,11                  | 0,07     |  |  |  |
| δ <sub>V∞</sub> - factor    |                                                    |         | 0,15 | 0,17                  | 0,11     |  |  |  |

<sup>1)</sup> Calculation of effective displacement:

 $\delta_{N0} = \delta_{N0} - factor \cdot N$  $\delta_{N\infty} = \delta_{N\infty} - factor \cdot N$ 

N = Action tension loading

<sup>2)</sup> Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0} - factor \cdot V$  $\delta_{V\infty} = \delta_{V\infty} - factor \cdot V$ 

V = Action shear loading

Table C9.3: Displacements under tension loads for category C2 for all embedment depths

| Cizo |                                   | FAZ II Plus dynamic, FAZ II Plus dynamic R |      |      |  |  |
|------|-----------------------------------|--------------------------------------------|------|------|--|--|
| Size |                                   | M16                                        | M20  | M24  |  |  |
| DLS  | δN,C2 (DLS)                       | 4,4                                        | 5,6  | 4,8  |  |  |
| ULS  | $\delta_{\text{N,C2 (ULS)}}$ [mm] | 12,3                                       | 14,4 | 15,2 |  |  |

<sup>1)</sup> No performance assessed

Table C9.4: Displacements under shear loads for category C2 for all embedment depths

| Size             |                                                      | FAZ II Plus dynamic, FAZ II Plus dynamic R |     |     |  |  |
|------------------|------------------------------------------------------|--------------------------------------------|-----|-----|--|--|
| Size             |                                                      | M16                                        | M20 | M24 |  |  |
| DLS with filling | δv,c2 (DLS)                                          | 1,2                                        | 2,0 | 4,2 |  |  |
| ULS with filling | $\frac{\delta_{V,C2}(ULS)}{\delta_{V,C2}(ULS)}$ [mm] | 3,1                                        | 4,4 | 7,4 |  |  |

<sup>1)</sup> No performance assessed

| fischer Bolt Anchor FAZ II Plus dynamic                  |           |
|----------------------------------------------------------|-----------|
| Performances Displacements under tension and shear loads | Annex C 9 |



Table C10.1: Essential characteristic values under tension and shear fatigue loads Design method I according to TR 061 – not in combination with seismic- or fire exosure

| Required eviden                                                        | ice                                     |                                            |                                                                                                                         |                                                    |                |                                  |
|------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|----------------------------------|
|                                                                        |                                         |                                            | Number of lo                                                                                                            |                                                    | _              |                                  |
|                                                                        |                                         | n ≤ 10 <sup>4</sup>                        | $10^4 < n \le 5 \cdot 10^6$                                                                                             | 5 · 10 <sup>6</sup> < n ≤ 1                        | 0 <sup>8</sup> | n > 10 <sup>8</sup>              |
| Tension load cap                                                       | pacity                                  | <b>/</b> <sup>1)</sup>                     |                                                                                                                         |                                                    |                |                                  |
| <b>ΔN</b> <sub>Rk,s,0,n</sub><br>FAZ II Plus<br>dynamic                | 11.NJ1                                  | N <sup>fat</sup> Rk,s ·<br>0,227           | $N^{fat}_{Rk,s} \cdot 10^{(-0,299-0,085 \cdot log(n))}$                                                                 | N <sup>fat</sup> Rk.s · 10 <sup>(-0,544-0,04</sup> | 8· log(n))     | N <sup>fat</sup> Rk,s · 0,11     |
| ΔN <sub>Rk,s,0,n</sub> FAZ II Plus  dynamic R                          | kN]                                     | N <sup>fat</sup> Rk,s ·<br>0,335           | N <sup>fat</sup> <sub>Rk,s</sub> · 10 <sup>(0,427-0,226</sup> · log(n))                                                 | N <sup>fat</sup> Rk,s · 10 <sup>(-0,405-0,10</sup> | 1 · log(n))    | N <sup>fat</sup> Rk,s · 0,05     |
| •                                                                      |                                         |                                            | N <sup>fat</sup> Rk,s = NRk,s acco                                                                                      | ording to Annex C1                                 |                |                                  |
| Characteristic fati                                                    | igue r                                  | esistance for                              | concrete cone and concrete splitting                                                                                    | ng and pull-out                                    |                |                                  |
| AN <sub>Rk,c,sp/p,0,n</sub> FAZ II Plus dynamic; FAZ II Plus dynamic R | kN]                                     | N <sup>fat</sup> Rk,c,sp/p·<br>0,68        | $N^{\text{fat}_{Rk,c,sp/p}} \cdot 10^{(0,055-0,055 \cdot \log(n))}$ $\geq N^{\text{fat}_{Rk,c,sp/p}} \cdot 0,5$         | N <sup>fat</sup> Rk,c,sp/p · 0,\$                  | 5              | N <sup>fat</sup> Rk,c,sp/p · 0,5 |
|                                                                        |                                         |                                            | $N^{fat}_{Rk,s} = N_{Rk,s}$ acco                                                                                        | ording to Annex C1                                 |                |                                  |
| Shear load capa                                                        | city                                    |                                            |                                                                                                                         |                                                    |                |                                  |
| <b>ΔV</b> <sub>Rk,s,0,n</sub><br>FAZ II Plus                           |                                         | V <sup>fat</sup> Rk,s -<br>0,26            | $V^{fat}_{Rk,s} \cdot 10^{(-0,15-0,108 \cdot log(n))}$                                                                  | V <sup>fat</sup> Rk,s · 10 <sup>(-0,48-0,059</sup> | }· log(n))     | V <sup>fat</sup> Rk,s · 0,10     |
| dynamic                                                                |                                         |                                            | $k,s = 62,8 \text{ kN for M16}; V^{fat}_{Rk,s} = 82,9$                                                                  | kN for M20; $V^{fat}_{Rk,s} = \frac{1}{2}$         | 128,3 kN       | for M24                          |
| <b>ΔV</b> <sub>Rk,s,0,n</sub><br>FAZ II Plus<br>dynamic R              |                                         | V <sup>fat</sup> <sub>Rk,s</sub> .<br>0,26 | $V^{fat}_{Rk,s} \cdot 10^{(-0,242-0,084 \cdot log(n))}$                                                                 | V <sup>fat</sup> Rk,s · 10 <sup>(-0,536-0,04</sup> | 0· log(n))     | V <sup>fat</sup> Rk,s · 0,13     |
|                                                                        |                                         | <b>V</b> <sup>fat</sup> R                  | $k,s = 62,8 \text{ kN for M16; V}^{\text{fat}}$ Rk,s = 98,0                                                             | kN for M20; V <sup>fat</sup> Rk,s = 1              | 141,2 kN       | for M24                          |
| Characteristic fati                                                    | gue r                                   | esistance for                              | concrete edge and pryout failure                                                                                        |                                                    |                |                                  |
| <b>ΔV</b> <sub>Rk,c,cp,0,n</sub><br>FAZ II Plus                        | [kN]                                    | V <sup>fat</sup> Rk,c,cp ·<br>0,58         | V <sup>fat</sup> <sub>Rk,c,cp</sub> · 10 <sup>(0,08-0,08</sup> · log(n))<br>≥ V <sup>fat</sup> <sub>Rk,c,cp</sub> · 0,5 | V <sup>fat</sup> Rk,c,cp · 0,5                     |                | V <sup>fat</sup> Rk,c,cp · 0,5   |
| - ,                                                                    |                                         | \                                          | $f^{\text{fat}}_{\text{Rk,c,cp}} = V_{\text{Rk,c,cp}}$ according to EN 19                                               | 92-4 with k <sub>8</sub> according                 | to Anne        | x C2                             |
| Exponents and I                                                        | load-i                                  |                                            |                                                                                                                         | •                                                  |                |                                  |
| Exponent for com                                                       |                                         |                                            |                                                                                                                         |                                                    |                |                                  |
| αs = αsn                                                               | [-]                                     |                                            | C                                                                                                                       | ),7                                                |                |                                  |
| Load-transfer fac                                                      | tor                                     |                                            |                                                                                                                         | ·                                                  |                |                                  |
| ΨΕΝ = ΨΕν                                                              | [-]                                     |                                            | C                                                                                                                       | ),5                                                |                |                                  |
|                                                                        | mbin                                    | ed load, ver                               | ification regarding failure modes                                                                                       | other than steel fail                              | ure            |                                  |
| ας                                                                     | [-]                                     | ,                                          |                                                                                                                         | ,5                                                 |                |                                  |
|                                                                        |                                         | g can be om                                | itted if there is a pure tension load                                                                                   | •                                                  |                | -                                |
|                                                                        |                                         |                                            |                                                                                                                         |                                                    |                |                                  |
| fischer Bolt Anch                                                      | fischer Bolt Anchor FAZ II Plus dynamic |                                            |                                                                                                                         |                                                    |                |                                  |
|                                                                        | Annox C 10                              |                                            |                                                                                                                         |                                                    |                |                                  |



Table C11.1: Essential characteristic values under tension and shear fatigue loads Design method II according to TR 061 – not in combination with seismic- or fire exosure

| FAZ II Plus dynamic FAZ II | h <sub>ef</sub>                 |                  |                          |                          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|--------------------------|--------------------------|------|
| Effective embedment depth  Steel failure  Characteristic steel fatigue FAZ II Plus dynamic resistance  FAZ II Plus dynamic FAZ | h <sub>ef</sub>                 |                  | M 16                     | M20                      | M24  |
| Characteristic steel fatigue FAZ II Plus dynamic FAZ II Plus dynam | h <sub>ef</sub>                 |                  |                          |                          |      |
| Characteristic steel fatigue FAZ II Plus dynamic FAZ II Plus dynam |                                 | [mm]             | 65 - 160                 | 100 - 180                | 125  |
| resistance FAZ II Plus dynamic F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | •                |                          |                          |      |
| 17 to 17 has ay name i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5.1                           | [LAJ]            | 8,7                      | 11,9                     | 19,8 |
| Concrete failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ${R}^{}\DeltaN_{Rk,s,0,\infty}$ | [kN]             | 4,2                      | 6,4                      | 9,4  |
| Jonici ete ianure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                  |                          |                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΔN <sub>Rk,c,0,∞</sub>          |                  | 0,5 · N <sub>Rk,c</sub>  |                          |      |
| Characteristic concrete fatigue resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΔN <sub>Rk,p,0,∞</sub>          | [kN]             |                          |                          |      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                  | . "                      |                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΔN <sub>Rk,sp,0,∞</sub>         |                  | 0,5 · N <sub>Rk,sp</sub> |                          |      |
| Shear load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                  |                          |                          |      |
| Shear load capacity, steel failure without lever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arm                             |                  | 2.2                      |                          | 100  |
| Characteristic steel fatigue FAZ II Plus dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ∆V <sub>Rk,s,0,∞</sub>          | [kN]             | 6,3                      | 8,3                      | 12,8 |
| resistance FAZ II Plus dynamic I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                               |                  | 8,2                      | 12,7                     | 18,4 |
| Concrete pryout failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | F1 5             |                          | 0 = 1:                   |      |
| Characteristic concrete fatigue resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΔV <sub>Rk,cp,0,∞</sub>         | [kN]             |                          | 0,5 · V <sub>Rk,cp</sub> |      |
| Concrete edge failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 1                |                          |                          |      |
| Characteristic concrete fatigue resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ∆V <sub>Rk,c,0,∞</sub>          | [kN]             |                          | 0,5 · V <sub>Rk,c</sub>  |      |
| Value of $h_{ef}$ (= $l_f$ ) under shear load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h <sub>ef</sub>                 | [mm]             | 65 - 160                 | 100 - 180                | 125  |
| Effective outside diameter of the anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $d_{nom}$                       | d <sub>nom</sub> |                          | 20                       | 24   |
| Exponents and load-transfer factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                  |                          |                          |      |
| Exponent for combined load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                  |                          |                          |      |
| $\alpha_{s} = \alpha_{sn}$ [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | 0,7              | 7                        |                          |      |
| Load-transfer factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                  |                          |                          |      |
| ψFN = ΨFv [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | 0,5              |                          |                          |      |
| Exponent for combined load, verification regar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rding failure                   | modes            | other than ste           | el failure               |      |
| α <sub>c</sub> [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 1,5              | 5                        |                          |      |