

ICC-ES Report

ICC-ES | (800) 423-6587 | (562) 699-0543 | www.icc-es.org

Most Widely Accepted and Trusted

ESR-3972

Reissued 02/2017 This report is subject to renewal 02/2018.

DIVISION: 03 00 00—CONCRETE SECTION: 03 16 00—CONCRETE ANCHORS DIVISION: 05 00 00—METALS SECTION: 05 05 19—POST-INSTALLED CONCRETE ANCHORS

REPORT HOLDER:

APOLO MEA BEFESTIGUNGSSYSTEME GmbH

INDUSTRIESTRASSE 6 AICHACH 86551 GERMANY

EVALUATION SUBJECT:

APOLO MEA RESIFIX VY ADHESIVE ANCHOR SYSTEM IN CRACKED AND UNCRACKED CONCRETE

Look for the trusted marks of Conformity!

"2014 Recipient of Prestigious Western States Seismic Policy Council (WSSPC) Award in Excellence"

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright $^{\ensuremath{\mathbb C}}$ 2017 ICC Evaluation Service, LLC. All rights reserved.

ISO/IEC 17065 Loct Certification #1000 OCPS Accrédité CCN

ICC-ES Evaluation Report

ESR-3972

Reissued February 2017 This report is subject to renewal February 2018.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

Apolo MEA Befestigungssysteme GmbH INDUSTRIESTRASSE 6 86551 AICHACH GERMANY +49 (8251) 90 485 0 www.apolofixing.com info@apolofixing.com

EVALUATION SUBJECT:

Apolo MEA ResiFIX VY ADHESIVE ANCHOR SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2015, 2012, 2009 and 2006 *International Building Code*[®] (IBC)
- 2015, 2012, 2009 and 2006 International Residential Code[®] (IRC)

Property evaluated:

Structural

2.0 USES

Apolo MEA ResiFIX VY adhesive anchors are used to resist static, wind or earthquake (IBC Seismic Design Categories A through F) tension and shear loads in uncracked normal-weight cracked and concrete with $\frac{1}{2}$, $\frac{5}{8}$, $\frac{3}{4}$, $\frac{7}{8}$, 1-, and $\frac{1}{4}$ -inch-diameter (12.7, 15.9, 19.1, 22.2, 25.4 and 31.8 mm) threaded steel rods and No. 4 through No. 10 steel reinforcing bars in hammer-drilled holes. The anchors are used to resist static, wind or earthquake (IBC Seismic Design Categories A and B only) tension and shear loads in uncracked normal-weight concrete only with ³/₈-inch-diameter (9.5 mm) threaded steel rods and No. 3 steel reinforcing bars in hammer-drilled holes. Use is limited to normalweight concrete with a specified compressive strength, f'c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The anchor system complies with anchors as described in Section 1901.3 of the 2015 IBC, Section 1909 of the 2012 IBC and is an alternative to cast-in-place and postinstalled anchors described in Section 1908 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 and 2006 A Subsidiary of the International Code Council®

IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

3.0 DESCRIPTION

3.1 General:

The Apolo MEA ResiFIX VY Adhesive Anchor System is comprised of Apolo MEA ResiFIX VY two-component adhesive filled in cartridges, static mixing nozzles and manual or powered dispensing tools, hole cleaning equipment and adhesive injection accessories.

Apolo MEA ResiFIX VY adhesive may be used with continuously threaded steel rods or deformed steel reinforcing bars. The primary components of the Apolo MEA ResiFIX VY Adhesive Anchor System, including the Apolo MEA ResiFIX VY adhesive cartridge, static mixing nozzle, the nozzle extension tube and steel anchor elements, are shown in Figures 1 and 2 of this report. The manufacturer's printed installation instructions (MPII), included with each adhesive unit package, are shown in Figure 3 of this report.

3.2 Materials:

3.2.1 Apolo MEA ResiFIX VY Adhesive: Apolo MEA ResiFIX VY adhesive is an injectable two-component vinylester adhesive. The two components are kept separate by means of a labeled dual-cylinder cartridge. The two components combine and react when dispensed through a static mixing nozzle, supplied by Apolo MEA, which is attached to the cartridge. Apolo MEA ResiFIX VY is available in 10-ounce (280 mL), 12-ounce (345 mL), and 14-ounces (410 mL) cartridges. Each cartridge label is marked with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened cartridge stored in a dry, dark, and cool environment, in accordance with the MPII, as illustrated in Figure 3 of this report.

3.2.2 Hole Cleaning Equipment: Hole cleaning equipment is comprised of steel wire brushes supplied by Apolo MEA Befestigungssysteme GmbH, and air blowers which are shown in Figure 3 of this report.

3.2.3 Dispensers: Apolo MEA ResiFIX VY adhesive must be dispensed with manual dispensers, pneumatic dispensers, or electric powered dispensers supplied by Apolo MEA Anchoring GmbH.

3.2.4 Steel Anchor Elements:

3.2.4.1 Threaded Steel Rods: Threaded steel rods must be clean and continuously threaded (all-thread) in diameters described in Table 4 and Figure 3. Specifications for grades of threaded rod, including the

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

mechanical properties, and corresponding nuts and washers, are included in Table 2 of this report. Carbon steel threaded rods must be furnished with a minimum 0.0002-inch-thick (0.005 mm) zinc electroplated coating complying with ASTM B633 SC 1 or a minimum 0.0021-inch-thick (0.053 mm) mechanically deposited zinc coating complying with ASTM B695, Class 55. The stainless steel threaded rods must comply with ASTM F593. Steel grades and types of material (carbon, stainless) for the washers and nuts must match the threaded rods. Threaded steel rods must be clean, straight and free of indentations or other defects along their length. The embedded end may be flat cut or cut on the bias to a chisel point.

3.2.4.2 Steel Reinforcing Bars: Steel reinforcing bars are deformed reinforcing bars as described in Table 3 of this report. Table 7 and Figure 3 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be clean, straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation except as set forth in ACI 318-14 Section 26.6.3.1 (b) or ACI 318-11 Section 7.3.2, as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.2.4.3 Ductility: In accordance with ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, in order for a steel anchor element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation less than 14 percent or a reduction of area less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in Table 2 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.

3.3 Concrete:

Normal-weight concrete must comply with Sections 1903 and 1905 of the IBC. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design:

4.1.1 General: The design strength of anchors under the 2015 IBC, as well as the 2015 IRC, must be determined in accordance with ACI 318-14 and this report. The design strength of anchors under the 2012, 2009, 2006 IBC, as well as the 2012, 2009 and 2006 IRC, must be determined in accordance with ACI 318-11 and this report.

The strength design of anchors must comply with ACI 318-14 17.3.1 or 318-11 D.4.1, as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Design parameters are provided in Tables 4 through Table 9 of this report. Strength reduction factors, ϕ , as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable.

Strength reduction factors, ϕ , as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

4.1.2 Static Steel Strength in Tension: The nominal static steel strength of a single anchor in tension, N_{sa} , in accordance with ACI 318-14 17.4.1.2 or ACI 318-11 D.5.1.2, as applicable, and the associated strength reduction factors, ϕ , in accordance with ACI 318-14 17.3.3

or ACI 318-11 D.4.3, as applicable, are provided in Table 4 and Table 7 of this report for the corresponding anchor steel.

4.1.3 Static Concrete Breakout Strength in Tension: The nominal static concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of $k_{c,cr}$ and $k_{c,uncr}$ as provided in Table 5 and Table 8 of this report. Where analysis indicates no cracking in accordance with ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N} = 1.0$. For anchors in lightweight concrete see ACI 318-14 17.2.6 or ACI 318-11 D.3.6, as applicable. The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-14 17.4.5 or ACI 318-11 D.5.5, as applicable.

Bond strength values ($\tau_{k,cr}$, $\tau_{k,uncr}$) are a function of concrete compressive strength, concrete state (cracked, uncracked), and installation conditions (dry concrete, water-saturated concrete, water-filled holes). The following table summarizes the requirements:

CONCRETE STATE	BOND STRENGTH	CONCRETE COMPRESSIVE STRENGTH	PERMISSIBLE INSTALLATION CONDITIONS	ASSOCIATED STRENGTH REDUCTION FACTOR
			Dry concrete	<i>\$</i> \$\$
Cracked	Tk,cr	fʻ _c	Water-saturated concrete	Øws
C C			Water-filled hole	4
			(flooded)	ϕ_{wf}
			Dry concrete	ϕ_{d}
Uncracked	Tk,uncr	fʻ _c	Water-saturated concrete	Øws
Unci			Water-filled hole	<i>ф</i> .
			(flooded)	ϕ_{wt}

Strength reduction factors for determination of the bond strength are given in Tables 6 and 9 of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the corresponding tables and this section.

The bond strength values in Table 6 and Table 9 of this report correspond to concrete compressive strength f_c equal to 2,500 psi (17.2 MPa). For concrete compressive strength, f_c between 2,500 psi and 8,000 psi (17.2 MPa and 55 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c / 2,500)^{0.13} [For **SI**: (f_c /17.2)^{0.13}]. Where applicable, the modified bond strength values must be used in lieu of $\tau_{k,cr}$ and $\tau_{k,uncr}$ in ACI 318-14 Equations (17.4.5.1d) and (17.4.5.2) or ACI 318-11 Equations (D-21) and (D-22), as applicable.

The resulting nominal bond strength must be multiplied by the associated strength reduction factor ϕ_{d} , ϕ_{ws} or ϕ_{wf} , as applicable.

4.1.5 Static Steel Strength in Shear: The nominal static steel strength of a single anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, and the strength reduction factor, ϕ , in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are given in Table 4 and Table 7 of this report for the corresponding anchor steel.

4.1.6 Static Concrete Breakout Strength in Shear: The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-14 17.5.2 or 318-11 D.6.2, as applicable, based on information given in Table 5 and Table 8 in this report.

The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable using the values of *d* given in Tables 5 and 8 for the corresponding anchor steel in lieu of d_a (2015, 2012 and 2009 IBC) and d_o (2006 IBC). In addition, h_{ef} must be substituted for ℓ_e . In no case shall ℓ_e exceed 8*d*. The value of f_c shall be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.

4.1.7 Static Concrete Pryout Strength in Shear: The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpgr} , shall be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable.

4.1.8 Interaction of Tensile and Shear Forces: For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.

4.1.9 Minimum Member Thickness h_{min} , Anchor Spacing s_{min} , Edge Distance c_{min} : In lieu of ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, as applicable, values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. The minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-14 17.7.4 or ACI 318-11 D.8.4, as applicable.

For anchors that will be torqued during installation, the maximum torque, T_{max} , must be reduced for edge distances less than five anchor diameters (5d). T_{max} is subject to the edge distance, c_{min} , and anchor spacing, s_{min} , and shall comply with the following requirements:

INSTALLATION TORQUE SUBJECT TO EDGE DISTANCE									
NOMINAL ANCHOR SIZE, D	MINIMUM EDGE DISTANCE, C _{min}	MINIMUM ANCHOR SPACING, S _{min}	MAXIMUM TORQUE, T _{max}						
all sizes	5d	5d	1.0·T _{max}						
³ / ₈ in. to 1 in.	1.75 in. (44.5 mm)	5d	0.45 [.] T _{max}						
1 ¹ / ₄ in.	2.75 in. (70 mm)	50	010 I max						

For values of T_{max} , see Figure 3 of this report.

4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$: The modification factor $\psi_{cp,Na}$, must be determined in accordance with ACI 318-14 17.4.5.5 or ACI 318-11 D.5.5.5, as applicable, except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318-14 Eq. 17.4.5.5b or ACI 318-11 Eq. D-27, as applicable, need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} must be calculated according to Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11, in lieu of ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable.

$$c_{ac} = h_{ef} \left(\frac{\tau_{k, uncr}}{1160} \right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}} \right]$$

(Eq. 17.4.5.5c for ACI 318-14 or Eq. D-27a for ACI 318-11)

where

 $\left[\frac{h}{h_{rel}}\right]$ need not be taken as larger than 2.4; and

 $\tau_{k,uncr}$ = the characteristic bond strength stated in the tables of this report whereby $\tau_{k,uncr}$ need not be taken as larger than:

$$\tau_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} f_c'}}{\pi \cdot d_a}$$
 Eq. (4-1)

4.1.11 Requirements for Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in Tables 4 and 7 for the corresponding anchor steel. The nominal bond strength $\tau_{\kappa,cr}$ must be adjusted by $\alpha_{N,seis}$ as given in Tables 6 and 9 for threaded rods. An adjustment to the nominal bond strength $\tau_{\kappa,cr}$ is not required for reinforcing bars ($\alpha_{N,seis} = 1.0$.).

As an exception to ACI 318-11 Section D.3.3.4.2: Anchors designed to resist wall out-of-plane forces with design strengths equal to or greater than the force determined in accordance with ASCE 7 Equation 12.11-1 or 12.14-10 shall be deemed to satisfy Section ACI 318-11 D.3.3.4.3(d).

Under ACI 318-11 D.3.3.4.3(d), in lieu of requiring the anchor design tensile strength to satisfy the tensile strength requirements of ACI 318-11 D.4.1.1, the anchor design tensile strength shall be calculated from ACI 318-11 D.3.3.4.4.

The following exceptions apply to ACI 318-11 D.3.3.5.2:

1. For the calculation of the in-plane shear strength of anchor bolts attaching wood sill plates of bearing or non-bearing walls of light-frame wood structures to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:

1.1. The allowable in-plane shear strength of the anchor is determined in accordance with AF&PA NDS Table 11E for lateral design values parallel to grain.

1.2. The maximum anchor nominal diameter is ${}^{5}\!/_{8}$ inch (16 mm).

1.3. Anchor bolts are embedded into concrete a minimum of 7 inches (178 mm).

1.4. Anchor bolts are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the wood sill plate.

1.5. Anchor bolts are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the wood sill plate.

1.6. The sill plate is 2-inch or 3-inch nominal thickness.

2. For the calculation of the in-plane shear strength of anchor bolts attaching cold-formed steel track of bearing or non-bearing walls of light-frame construction to foundations or foundation stem walls, the in-plane shear strength in accordance with ACI 318-11 D.6.2 and D.6.3 need not be computed and ACI 318-11 D.3.3.5.3 need not apply provided all of the following are satisfied:

2.1. The maximum anchor nominal diameter is $^{5}\!/_{8}$ inch (16 mm).

2.2. Anchors are embedded into concrete a minimum of 7 inches (178 mm).

2.3. Anchors are located a minimum of $1^{3}/_{4}$ inches (45 mm) from the edge of the concrete parallel to the length of the track.

2.4. Anchors are located a minimum of 15 anchor diameters from the edge of the concrete perpendicular to the length of the track.

2.5. The track is 33 to 68 mil designation thickness.

Allowable in-plane shear strength of exempt anchors, parallel to the edge of concrete shall be permitted to be determined in accordance with AISI S100 Section E3.3.1.

3. In light-frame construction, bearing or nonbearing walls, shear strength of concrete anchors less than or equal to 1 inch [25 mm] in diameter attaching a sill plate or track to foundation or foundation stem wall need not satisfy ACI 318-11 D.3.3.5.3(a) through (c) when the design strength of the anchors is determined in accordance with ACI 318-11 D.6.2.1(c).

4.2 Installation:

Installation parameters are illustrated in Figure 1 of this report. Installation must be in accordance with ACI 318-14 17.8.1 and 17.8.2 or ACI 318-11 D.9.1 and D.9.2. Anchor locations must comply with this report and the plans and specifications approved by the code official. Installation of the Apolo MEA ResiFIX VY Adhesive Anchor System must conform to the manufacturer's printed installation instructions included in each unit package as described in Figure 3 of this report.

4.3 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2015 and 2012 IBC, 1704.4 and 1704.15 of the 2009 IBC or Section 1704.13 of the 2006 IBC and this report. The special inspector must be on the jobsite initially during anchor installation to verify the anchor type, adhesive expiration date, anchor dimensions, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, anchor spacing, edge distances, concrete thickness, anchor embedment, tightening torque, and adherence to the manufacturers printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor by construction personnel on site. Subsequent installations of the same anchor type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed in accordance with ACI 318-14 17.8.2.4, 26.7.1(h) and 26.13.3.2 (c) or ACI 318-11 D.9.2.4, as applicable.

Under the IBC, additional requirements as set forth in Sections 1705, 1706 or 1707 must be observed, where applicable.

4.4 Compliance with NSF/ANSI Standard 61:

The Apolo MEA ResiFIX VY Vinylester Adhesive Anchor System complies with the requirements of NSF/ANSI Standard 61, as referenced in Section 605 of the 2015, 2012, 2009 and 2006 *International Plumbing Code*[®] (IPC) and is certified for use as an anchoring adhesive for installing threaded rods less than or equal to 1.3 inches (33 mm) in diameter in concrete for water treatment applications.

5.0 CONDITIONS OF USE

The Apolo MEA ResiFIX VY Adhesive Anchor System described in this report complies with or is a suitable alternative to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** Apolo MEA ResiFIX VY adhesive anchors must be installed in accordance with the manufacturer's printed installation instructions included with each cartridge and provided in Figure 3 of this report.
- **5.2** Anchors $[1/2^{-}, 5/8^{-}, 3/4^{-}, 7/8^{-}, 1^{-}, and 11/4 diameter (12.7, 15.9, 19.1, 22.2, 25.4 and 31.8 mm) threaded$ steel rods and No. 4 through No. 10 steel reinforcing bars] described in this report must be installed in cracked and uncracked normal-weight concrete having specified compressive а strenath f'_c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa). Anchors [³/₈-inch-diameter (9.5 mm)] threaded steel rods and No. 3 steel reinforcing bars in hammerdrilled holes must be installed in uncracked normalweight concrete having a specified compressive strength f'_{c} = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The values of f_c used for calculation purposes must not exceed 8,000 psi (55 MPa).
- **5.4** Anchors must be installed in concrete base materials in holes predrilled in accordance with the instructions provided in Figure 3 of this report.
- **5.5** Loads applied to the anchors must be adjusted in accordance with Section 1605.2 of the IBC for strength design.
- **5.6** In structures assigned to Seismic Design Categories C, D, E, and F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report.
- **5.7** Apolo MEA ResiFIX VY adhesive anchors are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report. Exception see Section 5.2 of this report.

- **5.8** Strength design values are established in accordance with Section 4.1 of this report.
- **5.9** Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values described in this report.
- **5.10** Prior to anchor installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- **5.11** Anchors are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, Apolo MEA ResiFIX VY adhesive anchors are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors are used to resist wind or seismic forces only.
 - Anchors that support gravity load-bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - Anchors are used to support nonstructural elements.
- **5.12** Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.13** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- **5.14** Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- 5.15 Steel anchoring materials in contact with preservativetreated and fire-retardant-treated wood shall be of

zinc-coated steel or stainless steel. The minimum coating weights for zinc-coated steel shall be in accordance with ASTM A153.

- **5.16** Periodic special inspection must be provided in accordance with Section 4.3 in this report. Continuous special inspection for anchors installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.3 of this report.
- **5.17** Installation of anchors in horizontal or upwardly inclined orientations to resist sustained tension loads must be performed by personnel certified by an applicable certification program in accordance with ACI 318-14 17.8.2.2 or 17.8.2.3 or ACI 318-11 D.9.2.2 or D.9.2.3, as applicable.
- 5.18 Anchors shall not be used for applications where the concrete temperature can vary from 40°F (5°C) or less to 80°F (27°C) or higher within a 12-hour period. Such applications may include but are not limited to anchorage of building facade systems and other applications subject to direct sun exposure.
- **5.19** Apolo MEA ResiFIX VY adhesive is manufactured in Willich, Germany, under a quality control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated January 2016, which incorporates requirements in ACI 355.4-11.

7.0 IDENTIFICATION

Apolo MEA ResiFIX VY adhesive is identified by packaging labeled with the manufacturer's name (Apolo MEA Befestigungssysteme GmbH) and address, anchor name, the lot number, the expiration date, and the evaluation report number (ESR-3972). Threaded rods, nuts, washers, and deformed reinforcing bars are standard steel anchor elements and must conform to applicable national or international specifications as set forth in Tables 2 and 3 of this report.

TABLE 1—DESIGN TABLE INDEX

	DESIGN STRENGTH ¹	THREADED ROD	DEFORMED REINFORCING BAR
Steel	N _{sa} , V _{sa}	Table 4	Table 7
Concrete	Npn, Nsb, Nsbg, Ncb, Ncbg, Vcb, Vcbg, Vcp, Vcpg	Table 5	Table 8
Bond ²	N _a , N _{ag}	Table 6	Table 9

¹Ref. ACI 318-14 17.3.1.1 or 318-11 D.4.1.1, as applicable. ²See Section 4.1 of this evaluation report.

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

	READED ROD ECIFICATION		MINIMUM SPECIFIED ULTIMATE STRENGTH, f _{uta}	MINIMUM SPECIFIED YIELD STRENGTH 0.2 PERCENT OFFSET, fya	f _{uta} /f _{ya}	ELONGATION, MIN. PERCENT ⁵	REDUCTION OF AREA, MIN. PERCENT	SPECIFICATION FOR NUTS ⁶	SPECIFICATION FOR WASHERS ⁶
CARRON	ASTM A193 ² Grade B7 all sizes	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A563 Grade D	ASTM F436
STEEL	ARBON TEEL ASTM A36 ³ / F1554, Grade 36 (all sizes		58,000 (400)	36,000 (250)	1.61	23	50	ASTM A563 Grade A	ASTM B18.22.1 Type A Plain
STAINLESS	ASTM F593 ⁴ CW1 ³ / ₈ to ⁵ / ₈ in.	psi (MPa)	100,000 (690)	65,000 (450)	1.54	40	_ 7	ASTM F594 Alloy	ASTM B18.22.1
STEEL (304/316)	ASTM F593 ⁴ CW2 ³ / ₄ to 1 ¹ / ₄ in.	psi (MPa)	85,000 (590)	45,000 (310)	1.89	40	_ 7	Group 1, 2 or 3	Type A Plain

¹Adhesive must be used with continuously threaded carbon or stainless steel rod (all-thread) having thread characteristics complying with ANSI B1.1 UNC Coarse Thread Series. ²Standard Specification for Alloy-Steel and Stainless steel Bolting Materials for High temperature of High Pressure service and Other Special Purpose Applications.

³Standard Specification for Carbon Structural steel ⁴Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.

⁵Based on 2-in. (50 mm) gauge length except for ASTM A193, which is based on a gauge length of 4d.

⁶Nuts and washers of other grades and style having specified proof load stress greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod. ⁷Minimum percent reduction of area not reported in the referenced ASTM standard.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING SPECIFICATION	UNITS	MINIMUM SPECIFIED ULTIMATE STRENGTH, <i>f_{uta}</i>	MINIMUM SPECIFIED YEILD STRENGTH, f _{ya}
ASTM A615 ¹ , A767 ³ , A996 ⁴	psi	90,000	60,000
Grade 60	(MPa)	(620)	(414)
ASTM A615 ¹ , Grade 40	psi	60,000	40,000
	(MPa)	(415)	(275)

¹Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.

²Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement.
³Standard specification for Zinc-Coated (Galvanized) steel Bars for Concrete Reinforcement.

⁴Standard specification for Rail-Steel and Axle-steel Deformed bars for Concrete Reinforcement.

TABLE 4—STEEL DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED F	\mathbf{D}^{1}
---	------------------

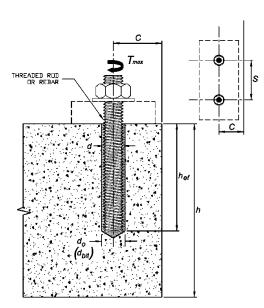
DFO						Nomina	al Rod Diamete	r (inch)					
DESI	GN INFORMATION	Symbol	Units	³ / ₈	1/2	⁵ / ₈	3/4	7/ ₈	1	1 ¹ / ₄			
Threa	ded rod O.D.	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.250 (31.8)			
	ded rod effective cross- nal area	A _{se}	in.² (mm²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	0.4617 (298)	0.6057 (391)	0.9691 (625)			
e 36	Nominal strength as governed by steel	N _{sa}	lb (kN)	4,495 (20.0)	8,230 (36.6)	13,110 (58.3)	19,400 (86.3)	26,780 (119.1)	35,130 (156.3)	56,210 (250.0)			
, Grade	strength (for a single anchor)	V _{sa}	lb (kN)	2,695 (12.0)	4,940 (22.0)	7,860 (35.0)	11,640 (51.8)	16,070 (71.4)	21,080 (93.8)	33,725 (150.0)			
ASTM A36/F1554,	Reduction factor for seismic shear	α _{V, seis}	-	Not applicable	0.85	0.85	0.85	0.85	0.80	0.80			
1 A36/	Strength reduction factor for tension ²	φ	-		0.75								
ASTN	Strength reduction factor for shear ²	φ	-		0.65								
B7	Nominal strength as governed by steel strength (for a single anchor)	N _{sa}	lb (kN)	9,685 (43.1)	17,735 (78.9)	28,250 (125.7)	41,810 (186.0)	57,710 (256.7)	75,710 (336.8)	121,135 (538.8)			
rade B		V _{sa}	lb (kN)	4,845 (21.5)	10,640 (7.3)	16,950 (75.4)	25,085 (111.6)	34,625 (154.0)	45,425 (202.1)	72,680 (323.3)			
ASTM A193 Grade	Reduction factor for seismic shear	α _{V, seis}	-	Not applicable	0.85	0.85	0.85	0.85	0.80	0.80			
STM A	Strength reduction factor for tension ²	φ	-				0.75						
Ϋ́	Strength reduction factor for shear ²	φ	-				0.65						
ess	Nominal strength as governed by steel	N _{sa}	lb (kN)	7,750 (34.5)	14,190 (63.1)	22,600 (100.5)	28,430 (126.5)	39,245 (174.6)	51,485 (229.0)	82,370 (366.4)			
Stain	strength (for a single anchor)	V _{sa}	lb (kN)	4,650 (20.7)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545 (104.7)	30,890 (137.4)	49,425 (219.8)			
ASTM F593 CW Stainless	Reduction factor for seismic shear	α _{V, seis}	-	Not applicable	0.85	0.85	0.85	0.85	0.80	0.80			
M F56	Strength reduction factor for tension ²	φ	-				0.65						
AST	Strength reduction factor for shear ²	φ	-				0.60						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Values provided for common rod material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers must comply with requirements for the rod. ²The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in

²The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4.


TABLE 5—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

					Nomin	al Rod Diamete	r (inch)				
DESIGN INFORMATION	Symbol	Units	³ /8	1/2	⁵ /8	³ / ₄	⁷ / ₈	1	1 ¹ / ₄		
Effectiveness factor for cracked concrete	k _{c,cr}	in-lb (SI)	n.a.				7 7)				
Effectiveness factor for uncracked concrete	k _{c,uncr}	in-lb (SI)				24 (10)					
Min. anchor spacing	S _{min}	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 ¹ / ₈ (79)	3 ³ / ₄ (95)	4 ³ / ₈ (111)	5 (127)	6 ¹ / ₄ (159)		
Min. edge distance	C _{min}	in. (mm)		See Section 4.1.9 of this report.							
Min. member thickness	h _{min}	in. (mm)		$h_{ef} + 1^{1}/_{4}$ ($h_{ef} + 30$) $h_{ef} + 2d_{0}^{3}$							
Critical edge distance - splitting (for uncracked concrete) ²	C _{ac}	-			See Sec	ction 4.1.10 of th	is report.				
Critical anchor spacing – splitting	S _{ac}	-				2·c _{ac}					
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-				0.65					
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-				0.70					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Additional setting information is described in Figure 3, installation instructions. ²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. ${}^{3}d_{0}$ = hole diameter.

THREADED ROD

TEASTA AVALANTANIA

REINFORCING BAR

FIGURE 1—INSTALLATION PARAMETERS FOR THREADED RODS AND REINFORCING BARS

TABLE 6-BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

							Nominal I	Rod Diame	eter (inch)		
	DESIG	N INFORMATION	Symbol	Units	³ /8	1/2	⁵ /8	³ / ₄	⁷ /8	1	1 ¹ / ₄
Minimu	im embedment		h _{ef,min}	in. (mm)	2 ³ / ₈ (60.3)	2 ³ / ₄ (69.9)	3 ¹ / ₈ (79.4)	3 ¹ / ₂ (88.9)	3 ¹ / ₂ (88.9)	4 (101.6)	5 (127.0)
Maxim	um embedment		h _{ef,max}	in. (mm)	4 ¹ / ₂ (114)	6 (152)	7 ¹ / ₂ (191)	9 (229)	10 ¹ / ₂ (267)	12 (305)	15 (381)
	Temperature	Characteristic bond strength in uncracked concrete	τ _{k,uncr}	psi (N/mm²)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	743 (5.1)	588 (4.1)
crete	range A ^{2,3} :	Characteristic bond strength in cracked concrete	τ _{k,cr}	psi (N/mm²)	Not applicable	498 (3.4)	519 (3.6)	519 (3.6)	519 (3.6)	519 (3.6)	525 (3.6)
Dry concrete	Temperature	Characteristic bond strength in uncracked concrete	τ _{k,uncr}	psi (N/mm²)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	366 (2.5)	Not applicable
ā	range B ^{2,3} :	Characteristic bond strength in cracked concrete	τ _{k,cr}	psi (N/mm²)	Not applicable	245 (1.7)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)
	Strength reduction	factor	ϕ_{d}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65
crete	Temperature	Characteristic bond strength in uncracked concrete	$\tau_{k,uncr}$	psi (N/mm²)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	743 (5.1)	588 (4.1)
d conc	range A ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	Not applicable	498 (3.4)	519 (3.6)	519 (3.6)	519 (3.6)	519 (3.6)	525 (3.6)
aturate	Temperature	Characteristic bond strength in uncracked concrete	τ _{k,uncr}	psi (N/mm²)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	366 (2.5)	Not applicable
Water-saturated concrete	range B ^{2,3} :	Characteristic bond strength in cracked concrete	τ _{k,cr}	psi (N/mm²)	Not applicable	245 (1.7)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)	255 (1.8)
3	Strength reduction	factor	ϕ_{ws}	-	0.55	0.55	0.55	0.55	0.55	0.55	0.55
ded)	Temperature	Characteristic bond strength in uncracked concrete	$\tau_{k,uncr}$	psi (N/mm²)	642 (4.4)	642 (4.4)	642 (4.4)	642 (4.4)	576 (4.0)		lot cable
e (floo	range A ^{2,3} :	Characteristic bond strength in cracked concrete	τ _{k,cr}	psi (N/mm²)	Not applicable	388 (2.7)	405 (2.8)	405 (2.8)	363 (2.5)	358 (2.5)	352 (2.4)
Water-filled hole (flooded)	Temperature	Characteristic bond strength in uncracked concrete	τ _{k,uncr}	psi (N/mm²)	316 (2.2)	316 (2.2)	316 (2.2)	316 (2.2)		Not applicable	
ater-fill	range B ^{2,3} :	Characteristic bond strength in cracked concrete	τ _{k,cr}	psi (N/mm²)	Not applicable	191 (1.3)	199 (1.4)	199 (1.4)	179 (1.3)	176 (1.2)	171 (1.2)
Š	Strength reduction factor			-	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Reduct	tion factor for seism	ic tension	∝ _N ,seis	-				0.95			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength, f_c between 2,500 psi and 8,000 psi, the tabulated characteristic bond strength may be increased by a factor of ($f_c/2500$)^{0.13}. See Section 4.1.4 of this report. ²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C) Temperature range B: Maximum short

term temperature = 248°F (120°C), maximum long term temperature = 161°F (72°C)

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly ³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind, bond

strengths may be increased by 43 percent for temperature range A and 122 percent for temperature range B.

DESI		Symbol	Units				Nominal	Bar Size				
DESIG	INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	
Reinfo	orcing bar O.D.	d	in. (mm)	0.375 (9.5)	0.500 (12.7)	0.625 (15.9)	0.750 (19.1)	0.875 (22.2)	1.000 (25.4)	1.125 (28.6)	1.250 (31.8)	
	orcing bar effective cross- nal area	A _{se}	in.² (mm²)	0.110 (71)	0.200 (129)	0.310 (200)	0.440 (284)	0.600 (387)	0.790 (510)	1.000 (645)	1.270 (819)	
A996	Nominal strength as governed by steel	N _{sa}	lb (kN)	9,900 (44.0)	18,000 (80.1)	27,900 (124.1)	39,600 (176.1)	54,00 (240.2)	71,100 (316.3)	90,000 (400.3)	114,300 (508.4)	
6, A767, <i>i</i> 60	strength (for a single anchor)	V _{sa}	lb (kN)	5,940 (26.4)	10,800 (48.0)	16,740 (74.5)	23,760 (105.7)	32,400 (144.1)	42,660 (189.8)	54,000 (240.2)	68,580 (305.0)	
5, A706, <i>,</i> Grade 60	Reduction factor for seismic shear	α _{V,seis}	-	Not applicable	0.70	0.70	0.70	0.70	0.70	0.70	0.70	
4615, <i>i</i> Gr	Strength reduction factor for tension ²	φ	-		0.65							
ASTM A615, A706, Grade 60	Strength reduction factor for shear ²	φ	-				0.0	60				
40 ³	Nominal strength as governed by steel	N _{sa}	lb (kN)	6,600 (29.4)	12,000 (53.4)	18,600 (82.7)	26,400 (117.4)					
Grade 4	strength (for a single anchor)	V _{sa}	lb (kN)	3,960 (17.6)	7,200 (32.0)	11,160 (49.6)	15,840 (70.5)	In accordance with ASTM A615, Grade 40 bars are furnished only in sizes N through No. 6				
615 GI	Reduction factor for seismic shear	α _{V,seis}	-	Not applicable	0.70	0.70	0.70		through			
STM A615	Strength reduction factor for tension ²	φ	-		0.65							
SY	Strength reduction factor for shear ²	φ	-		0.60							

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 006894 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Values provided for common bar material types based on specified strengths and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2 b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable.

²The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. ³In accordance with ASTM A615, Grade 40 bars are furnished only in sizes No. 3 through No. 6.

TABLE 8—CONCRETE BREAKOUT DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DESIGN INFORMATION	Symphol	Units				Nomi	nal Bar Size				
DESIGN INFORMATION	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No.10	
Effectiveness factor for cracked concrete	k _{c,cr}	in-lb (SI)	n.a.				17 (7)				
Effectiveness factor for uncracked concrete	k _{c,uncr}	inlb. (SI)					24 (10)				
Min. anchor spacing	S _{min}	in. (mm)	1 ⁷ / ₈ (48)	2 ¹ / ₂ (64)	3 ¹ / ₈ (79)	3 ³ / ₄ (95)	4 ³ / ₈ (111)	5 (127)	5 ⁵ / ₈ (143)	6 ¹ / ₄ (159)	
Min. edge spacing	C _{min}	in. (mm)		See Section 4.1.9 of this report.							
Min. member thickness	h _{min}	in. (mm)	$h_{ef} + 1^{1}/_{4}$ ($h_{ef} + 30$) $h_{ef} + 2d_{0}^{-3}$								
Critical edge spacing – splitting (for uncracked concrete) ²	C _{ac}	-				See Section	4.1.10 of this re	port.			
Critical anchor spacing – splitting	S _{ac}	-					2·c _{ac}				
Strength reduction factor for tension, concrete failure modes, Condition B ²	φ	-					0.65				
Strength reduction factor for shear, concrete failure modes, Condition B ²	φ	-					0.70				

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Additional setting information is described in Figure 3, installation instructions.

²Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4 ondition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. The tabulated value of ϕ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 5.3 or ACI 318-11.9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. ${}^{3}d_{0}$ = hole diameter.

TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT¹

DESIG								Nominal	Bar Size			
DESIG		JN	Symbol	Units	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Minimu	um embedment		h _{ef,min}	in. (mm)	2 ³ / ₈ (60.3)	2 ³ / ₄ (69.9)	3 ¹ / ₈ (79.4)	3 ¹ / ₂ (88.9)	3 ¹ / ₂ (88.9)	4 (101.6)	4 ¹ / ₂ (114)	5 (127.0)
Maxim	um embedment		h _{ef,max}	in. (mm)	4 ¹ / ₂ (114)	6 (152)	7 ¹ / ₂ (191)	9 (229)	10 ¹ / ₂ (267)	12 (305)	13 ¹ / ₂ (343)	15 (381)
	Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	743 (5.1)	668 (4.6)	588 (4.1)
crete	range A ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	Not applicable	331 (2.3)	345 (2.4)	345 (2.4)	345 (2.4)	345 (2.4)	349 (2.4)	349 (2.4)
Dry concrete	Temperature	Characteristic bond strength in uncracked concrete	Tk,uncr	psi (N/mm²)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	366 (2.5)	329 (2.3)	Not applicable
D	range B ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	Not applicable	163 (1.1)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)	172 (1.2)	172 (1.2)
	Strength reduct	tion factor	ϕ_{d}	-	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
crete	Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	823 (5.7)	743 (5.1)	668 (4.6)	588 (4.1)
d conc	range A ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	Not applicable	331 (2.3)	345 (2.4)	345 (2.4)	345 (2.4)	345 (2.4)	349 (2.4)	349 (2.4)
aturate	Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	405 (2.8)	366 (2.5)	329 (2.3)	Not applicable
Water-saturated concrete	range B ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	Not applicable	163 (1.1)	170 (1.2)	170 (1.2)	170 (1.2)	170 (1.2)	172 (1.2)	172 (1.2)
Μ	Strength reduct	tion factor	Φws	-	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
ded)	Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	642 (4.4)	642 (4.4)	642 (4.4)	642 (4.4)	576 (4.0)		Not applicable	
e (floo	range A ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	Not applicable	258 (1.8)	269 (1.9)	269 (1.9)	242 (1.7)	238 (1.7)	237 (1.6)	234 (1.6)
led hol	Temperature	Characteristic bond strength in uncracked concrete	T _{k,uncr}	psi (N/mm²)	316 (2.2)	316 (2.2)	316 (2.2)	316 (2.2)			lot icable	
Water-filled hole (flooded)	range B ^{2,3} :	Characteristic bond strength in cracked concrete	T _{k,cr}	psi (N/mm²)	Not applicable	127 (0.9)	133 (0.9)	133 (0.9)	119 (0.8)	117 (0.8)	117 (0.8)	115 (0.8)
Ň	Strength reduct	tion factor	ϕ_{wf}	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Reduc	tion factor for se	ismic tension	∝ <i>N</i> ,seis	-				1.	00			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi. For concrete compressive strength f'_c between 2,500 psi and 8,000 psi, tabulated characteristic bond strength may be increased by a factor of $(f_c/2,500)^{0.13}$. See Section 4.1.4 of this report. ²Temperature range A: Maximum short term temperature = 176°F (80°C), maximum long term temperature = 122°F (50°C) Temperature range B: Maximum short

Temperature range A: Maximum short term temperature = $176^{\circ}F$ (80°C), maximum long term temperature = $122^{\circ}F$ (50°C) Temperature range B: Maximum short term temperature = $248^{\circ}F$ ($120^{\circ}C$), maximum long term temperature = $161^{\circ}F$ ($72^{\circ}C$)

Short term elevated concrete temperatures are those that occur over brief intervals, e.g. as result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

³Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short term loads only, such as wind and seismic, bond strengths may be increased by 42 percent for temperature range A and 122 percent for temperature range B.

TWO-COMPONENT CARTRIDGE ADHESIVE

STATIC MIXING NOZZLE

FIGURE 2—RESIFIX VY ADHESIVE ANCHOR SYSTEM

Apolo MEA ResiFIX VY - Instruction Card

			Pr	ep	ari	ng	9				I	Hole	clea	ning \rightarrow In o	rder: Blow	4x, Brus	sh 4x,	Blov	v 4x		D	rillin	ng
	sinole		her -i		/		- Invit							*	TANKING TANK			*		A.		1	North North
unspensary adversive mounter mained more, separately unspense at least inter mile strokes of adhesive through the mixing nozzle until the adhesive is a consistent gray color.	Adhesive must be properly mixed to achieve published properties. Prior to	and from a moving the another read in two intermed over interview promotion are embeddened depth has to be marked on the anchor. Verify anchor element is straight and free of surface damane	The Prior to inserting the anchor rod or rehar into the filled hore hole. The position of the	Note: Always use a new musing nozzle with new cartridges of adhesive and also for all work informations acreaning the nublected real (working) lines of the adhesive	and make sure the many element is inside the nozzle, Load the cantroge into the correct dispensing tool.	Attach a supplied mixing nozzle to the cartridge. Do not modify the mixer in any way	For the permitted range of the base material temperature see Table 3.	Review working and cure times. Consideration should be given to the reduced get (working) time of the adhesive in warm temperatures.	be between 32°F - 95°F (0°C - 35°C) when in use except as noted in Table 3.	Check adhesive expiration date on cartridge label. Do not use expired product. Review Material Safety Data Sheet (MSDS) before use. Cartridoe temperature must		When finished the hole should be clean and free of dust, debris, i.o., grease, oil or other foreign material.	 Use a compressed air nozzle (mm, 90 psi) for anchor nod 7/8" to 1-1/4" Idameter and rebar sizes #7 to #10. A hand pump must not be used with these anchor sizes. 	 Finally blow the hole clean again a minimum of four times (4x). Use a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl: oz supplied by Apolo MEA) for anchor rod 3/8" to 3/4" diameter or reinforcing bar (rebar) sizes #3 to #6. 	adaptor to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of <i>four</i> times (4x). A brush extension (supplied by Apolo MEA Befasigurgssysteme) must be used for holes drilled deeper than the listed brush length. The wire brush diameter must be checked periodically during use (Ø _{trush} > D _{inth} , see Table 2). The brush should resist insertion into the drilled hole - if not the brush is too small and must be replaced with the proper brush diameter.	and rebar sizes #7 to #10. A hand pump must not be used with these anchor sizes. Determine brush diameter (see Table 2) for the drilled hole and attach the brush with	 Use a compressed air nozzle (min. 90 psi) for anchor rod 7/8" to 1-1/4" diameter 	 Use a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz. sunniled hv Apolo MEA Befestiarinssysteme) for anchor rod 38° to 34° dameter or 	In our we note (e.g., exocutin, compresent an, every prior) to occurring. Starting from the bottom or back of the drilled bore hole, blow the hole clean a minimum of four times (4x).	Fin case of standing water in the drilled bore hole, all the water has to be removed from the hole (a cr vacuum composeed air etc.) briter to cleaning	the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.	B2T2.19. Precaution: Wear suitable eye and skin protection. Avoid inhalation of dusts during relition and/or removal. Note: In page of standion water in the relited hore hole all	Drill a hole into the base material with a hammer drill tool to the size and embedment required by the selected steel hardware element (see Table 4.1 or Table 4.2). The tolerances of the carbide drill bit must meet the requirements of ANSI Slandard
-	1	1	T	r	F	1		T			0	d 7	N	Curing a	nd fixture	1		In	stalla	ation	n		
A brush e brush for		1-1/4	1	7/8	3/4	00	5/8		1/2	3/8	inch)	rod	Н		11	(Inc)	1	-		1		3.5	1
A brush extension (Ca brush for holes drilled	- #10	1-1/4 拱9	1 #8	7/8 #7	3/4 #6		5/8 隽	· 世	1/2 -	3/8 #3	(inch) (no.)	led	2. Hole clea		C. Ser			1		h		1	1.51
A brush extension (Cat. #MRBKV) mu brush for holes drilled deeper than the	- #10 1-1/2	-						- #4 5/8	1/2 - 9/16			77			68°F	1					with piston plug:		
A brush extension (Cat. #MRBKV) must be used with a brush for holes drilled deeper than the listed brush lengt	-	悲			费	n.	劈			#3	(no.) (inch) (i	Rebar size	cleaning tools	Take care no Take care no		applications a secured from to the anchor moved after p	B Be sure that the adhesive has a not enough a		Do not install provided by A The anchor sl	hole and injection will be natural	with piston plug:	Cat. #9MDV)	Fill the cleane the bottom or hole fills to av
THE DE	1-1/2	井9 1-3/8	1-1/8 1.175	#7 1	#6 7/8	3/4	势 11/16	5/8	- 9/16	#3 7/16	(no.) (inch) (Rebar size diameter ²	cleaning tools			applications and applicati secured from moving/falli to the anchor may be per moved after placement an				hole and inject as describ will be naturally extruded	with piston plug:	Gal. #9MDV) must be used	·공물관
tee	1-1/2 1.550	#9 1-3/8 1.425	1-1/8 1.175 11-7/8	#7 1 1.045	#6 7/8 0.920	3/4 0.790	#5 11/16 0.735	5/8 0.708	- 9/16 0.600	#3 7/16 0.475	(no.) (inch) (inches)	Rebar drill bit diameter, size diameter ² D _{min}			68°F	applications and applications between horizontal and overhead the anchor must be secured from moving/falling during the cure time (e.g. wedges). Mihor adjustments to the anchor may be performed during the gel time but the anchor shall not be moved after placement and during cure.				hole and inject as described in the method above. During installation the piston plug will be naturally extruded from the drilled hole by the adhesive pressure. Attention	with piston plug:	Cat. #9MDV) must be used with the mixing nozzle.	1393

	n i v		1.000	A11.11	and the second s	Compressed air nozzle
A brush extension (Cat. #MRBKV) must be used with a steel wire brush for holes drilled deeper than the listed brush length.	xn (Cat. # frilled de	eper than the l	t be used with a : Isted brush lengt	steel wire h.		
⁶ For installations with 5/8-incl bit is used the user must che borehole without resistance.	with 5/8- er must o resistan	nch threaded i sheck before in se.	ied and #5 rebar	size, the prefe sive to verify t	arred ANSI drill bit hat the steel anch	For installations with 5/8-inch threaded rod and #5 rebar size, the preferred ANSI drill bit diemeter is 34-inch. If a 11/16-inch ANSI drill bit is used the user must check before injecting the adhesive to verify that the steel anthor element can be inserted into the cleaned brochole without resistance.

FIGURE 3—INSTALLATION INSTRUCTIONS

DESCRIPTION: ResIFIX VY is an easy dispensing, rapid-curing, high strength anchoring adhesive which is formulated for use by trained professionals. Please refer to installation instructions and MSDS for additional detailed information.

Safety glasses and dust masks should be used when drilling holes into concrete, stone and masking when glowes and safety glasses when handling and dispensing adhesive. Do not sand the adhesive and create silica dust which could be inhaled. Avoid skin and eye contact. Use a NIOSH-approved chemical mask to avoid respiratory discomfort if working indoors or in a confined area, or if sensitive to adhesive odors. Wash hands or other affected PRECAUTION:

body parts with soap and water if skin contact occurs. Flush eyes with plenty of water and seek inimediate medical attention if eye contact occurs. Move to fresh air if adhesive odor begins to cause discomfort.

IMPORTANTI

This product contains crystalline slica and as supplied does not pose a dust hazard. IARC classifies crystalline slica (quartz sand) as a Group L carcinogen based upon evidence among workers in industries where there has been long-term and chronic exposure (via inhalation) to slica dust; e.g. mining, quarty, to wear proper respiratory and eye protection to avoid health risk pose a dust hazard; therefore, this classification is not relevant. However, if reacted (fully cured) product is further processed (e.g. sanded, drilled) be sure Before using, read and review Material Safety Data Sheet (MSDS). stone crushing, refractory brick and pottery workers. This product does not

HANDLING AND STORAGE:

Store in a cool, dry, well ventilated area at temperatures between 32°F (0°C) and 86°F (30°C). Keep away from excessive heat and flame. Keep partially used containers closed when not in use. Protect from damage. Store away from heat and light.

Before use see expiration date on product label

Do not use expired product. Partially used cartridges may be stored with

hardened adhesive in the attached mixing nozzle. Note: If the cartridge is reused, attach a new mixing nozzle and discard the initial quantity of the anchor adhesive as described in the setting instructions (steps N3 and N5).

1 Aichach, Germany	triestraße 6	MEA Befestigungssysteme GmbH	
F: +49 (8251) 90 485 49	P: +49 (8251) 90 485 0	www.apolofixing.com	
E			

Apolo Indus 86551

6. Adhesive Piston Plugs

diameter (inch)	size (no.)	diameter (inch)	Size (inch)	Plug (Cat. #)	overhead installations
1/2	and the second	9/16	9/16	VFS14	
	西	5/8	5/8	VFS16	
5/8	悲	3/4	3/4	VFS19	
3/4	8#	7/8	7/8	VFS22	
7/8	#7	4	4	VFS25	
1	#8	1-1/8	1-1/8	VFS29	
1-1/4	6#	1-3/8	1-3/8	VFS35	
	#10	1-1/2	1-1/2	VFS38	

A plastic extension tube (3/8" dia., Cat. #9MDV) must be used with piston plugs

Temperatu	Comparature of base material	Gal (working) time	Full curing time
		(C	
14°F	-10°C	90 minutes	24 hours
23°F	-5°C	90 minutes	14 hours
32°F	0.0	45 minutes	7 hours
41°F	5°C	25 minutes	2 hours
50°F	10°C	15 minutes	90 minutes
68°F	20°C	6 minutes	45 minutes
96°F	30°C	4 minutes	25 minutes
95°F	35°C	2 minutes	20 minutes
104°F	40°C	1.5 minutes	15 minutes

1 3

4. Setting parameters

Table 4.1 Specifications for installation of threaded rods

			Nominal threaded rod size	nreaded ru	od size		
Anonor property / Setting mornauon	3/8"	1/2"	5/8"	3/4"	7/8"	1.	1-1/4"
d = Nominal anchor rod diameter (in.)	0.375	0.500	0.625	0.750	0.875	1.000	1:250
A_{ov} = Nominal area of threaded rod (in. ²)	0.078	0.142	0.226	0,335	0,462	0,606	0.969
d _o (d _{ut}) = Nominal ANSI drill bit size (in.)	7/16	9/16	11/16 or 3/4	7/8	-	1-1/8	1-3/8
Tmax = Maximum torque (ftlb.) for A193 B7 carbon steel rod or F593 SS rod	16	33	60	105	-	107	200
Tmax = Maximum torque (ftlb.) for A36/A307 carbon steel rod only	10	25	50	90	123	CQ)	787
hermin = Minimum embedment (inches)	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	5
h _{istmax} = Maximum embedment (inches)	4-1/2	6	7-1/2	9	10-1/2	12	15
s _{min} = Minimum spacing (inches)	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	5	6-1/4
com = Minimum edge distance (inches)	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	2-3/4
have = Minimum member thickness (inches)	r +	har + 1-1/4			her + 2do		

Table 4.2 Specifications for installation of deformed steel reinforcing bars

Anchor property / Setting information	ŧ	#4		Reinforc	Reinforcing bar size		ŧ	
monor property i control monitori	#3	费	费	#6	#7	#8	#9	~
d = Nominal bar diameter (in.)	3/8	1/2	5/8	3/4	7/8	1	1-1/8	00
$d_o (d_{bb}) =$ Nominal ANSI drill bit size (in.)	7/16	5/8	11/16 or 3/4	7/8	1	1-1/8	1-3/8	~
hefmin = Minimum embedment (inches)	2-3/8	2-3/4	3-1/8	3-1/2	3-1/2	4	4-1/2	N
hefmax = Maximum embedment (inches)	4-1/2	6	7-1/2	9	10-1/2	12	13-1/2	2
smn = Minimum spacing (inches)	1-7/8	2-1/2	3-1/8	3-3/4	4-3/8	Ū,	5-5/8	
c _{mn} = Minimum edge distance (inches)	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	1-3/4	2-3/4	
hmn = Minimum member thickness (inches)	h _{el} +	her + 1-1/4			her+	2do		

U. . ResiFIX VY adhesive anchor system selection table

Injection tools		Plastic cartridge system	Extra mixing nozzles
APP 300 caulking gun	Cat. #300APP - Standard all-metal	ResiFIX VY 300 SF 10 fl. oz. 2 nozzles Cat. #300VSF	ResiFIX VY mixing nozzle MD Cat. #9MRMEA
APVM caulking gun	Cat. #345APVM - Standard all-metal	ResiFIX VY 345 SF 12 fl. oz. 2 nozzles Cat. #345VSF	ResiFIX VY mixing nozzle MD Cat. #9MRMEA
APP 380 caulking gun	Cat. #380APP - Standard all-metal	ResiFIX VY 410 SF 14 fl. oz. 1 nozzle Cat. #410VYSF	ResiFIX VY mixing nozzle MD Cat. #9MRMEA

ICC-ES Evaluation Report

Most Widely Accepted and Trusted

ESR-3972 FBC Supplement

Reissued February 2017 This report is subject to renewal February 2018.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

Apolo MEA Befestigungssysteme GmbH INDUSTRIESTRASSE 6 86551 AICHACH GERMANY +49 (8251) 90 485 0 www.apolofixing.com info@apolofixing.com

EVALUATION SUBJECT:

Apolo MEA ResiFIX VY ADHESIVE ANCHOR SYSTEM IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND EVALUATION SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that Apolo MEA ResiFIX VY Adhesive Anchor System in cracked and uncracked Concrete, recognized in ICC-ES master evaluation report ESR-3972, has also been evaluated for compliance with the codes noted below.

Compliance with the following codes:

- 2010 Florida Building Code—Building
- 2010 Florida Building Code—Residential

2.0 PURPOSE OF THIS SUPPLEMENT

The Apolo MEA ResiFIX VY Adhesive Anchor System in Cracked and Uncracked Concrete, described in Sections 2.0 through 7.0 of the master evaluation report ESR-3972, complies with the 2010 *Florida Building Code—Building* and the 2010 *Florida Building Code—Residential*, provided the design and installation are in accordance with the 2009 *International Building Code*[®] (IBC) provisions noted in the master report and the following provisions apply:

- Design wind loads must be based on Section 1609 of the 2010 *Florida Building Code—Building* or Section 301.2.1.1 of the 2010 *Florida Building Code—Residential*, as applicable.
- Load combinations must be in accordance with Section 1605.2 or Section 1605.3 of the 2010 Florida Building Code— Building, as applicable.
- The modifications to ACI 318 as shown in the 2009 IBC Sections 1908.1.9 and 1908.1.10, as noted in 2009 IBC Section 1912.1, do not apply to the 2010 *Florida Building Code*.

Use of the Apolo MEA ResiFIX VY Adhesive Anchor System in Uncracked Concrete for compliance with the High-Velocity Hurricane Zone provisions of the 2010 *Florida Building Code—Building* and the 2010 *Florida Building Code—Residential* has not been evaluated, and is outside the scope of this report.

For products falling under Florida Rule 9N-3, verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the master report, reissued February 2017.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

