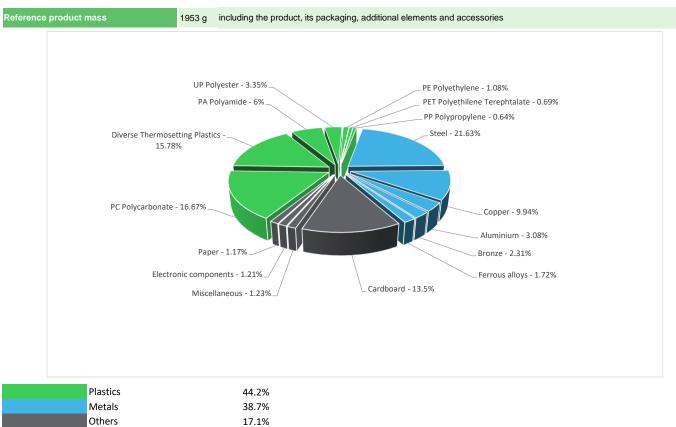
# **Product Environmental Profile**

#### PowerPact H-frame Molded Case Circuit Breaker with Micrologic™ Trip Unit










### General information

| Reference product          | PowerPact H-frame Molded Case Circuit Breaker with Micrologic™ Trip Unit - HJL36150U31X                                                                                                                                                                                                                                                                          |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of the product | MOLDED CASE CIRCUIT BREAKER 600V 150A with Micrologic 3.2 trip unit is designed to protect electrical systems from damage caused by overloads and short circuits.                                                                                                                                                                                                |
| Description of the range   | Single product                                                                                                                                                                                                                                                                                                                                                   |
| Functional unit            | Protect the installation from overloads and short circuits in a circuit with rated voltage Ue, rated current In, with Np poles, a rated breaking capacity Icu, and, if applicable, the specific specifications, in the Industrial application area, according to the appropriate use scenario, and during the reference service life of the product of 20 years. |
| Specifications are:        | Protect during 20 years the installation against overloads and short-circuits in circuit with assigned voltage 600 VAC and rated current 150 A. This protection is ensured in accordance with the following parameters:  - Number of poles Np: 3P  - Rated breaking capacity Icn: 25 kA  - Tripping curve Cd: C                                                  |

## \\<u>\</u>

#### **Constituent materials**



Substance assessment

Details of ROHS and REACH substances information are available on the Schneider-Electric website <a href="https://www.se.com">https://www.se.com</a>



## Additional environmental information

End Of Life

Recyclability potential:

44%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

## **Environmental impacts**

| Reference service life time      | 20 years                                                                                                                                                                                                                                             |                               |                                                          |                                                |  |  |  |  |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
| Product category                 | Circuit-breakers - Industrial                                                                                                                                                                                                                        |                               |                                                          |                                                |  |  |  |  |  |  |  |
| Installation elements            | The product does not require any installation operations                                                                                                                                                                                             |                               |                                                          |                                                |  |  |  |  |  |  |  |
| Use scenario                     | Load rate = 50 % In<br>Use rate = 30% RLT                                                                                                                                                                                                            | <del></del>                   |                                                          |                                                |  |  |  |  |  |  |  |
| Time representativeness          | The collected data are representative of the year 2025                                                                                                                                                                                               |                               |                                                          |                                                |  |  |  |  |  |  |  |
| Technological representativeness | The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product. |                               |                                                          |                                                |  |  |  |  |  |  |  |
| Geographical                     | Final assembly site Use phase End-of-life                                                                                                                                                                                                            |                               |                                                          |                                                |  |  |  |  |  |  |  |
| representativeness               | United States                                                                                                                                                                                                                                        | United States US US           |                                                          |                                                |  |  |  |  |  |  |  |
|                                  | [A1 - A3]                                                                                                                                                                                                                                            | [A1 - A3] [A5] [B6] [C1 - C4] |                                                          |                                                |  |  |  |  |  |  |  |
| Energy model used                | Electricity Mix; Low voltage; 2020; United States,<br>US                                                                                                                                                                                             | No energy used                | Electricity Mix; Low voltage;<br>2020; United States, US | Global, European and French datasets are used. |  |  |  |  |  |  |  |

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

| Mandatory Indicators                                         |                 | Power                       | Pact H-frame Mol             | ded Case Circu         | it Breaker with I      | Micrologic™ Trip | Unit - HJL36150            | U31X                        |
|--------------------------------------------------------------|-----------------|-----------------------------|------------------------------|------------------------|------------------------|------------------|----------------------------|-----------------------------|
| Impact indicators                                            | Unit            | Total (without<br>Module D) | [A1 - A3] -<br>Manufacturing | [A4] -<br>Distribution | [A5] -<br>Installation | [B1 - B7] - Use  | [C1 - C4] - End<br>of life | [D] - Benefits<br>and loads |
| Contribution to climate change                               | kg CO2 eq       | 1.67E+02                    | 1.52E+01                     | 2.55E-01               | 0*                     | 1.48E+02         | 4.02E+00                   | -3.03E+00                   |
| Contribution to climate change-fossil                        | kg CO2 eq       | 1.67E+02                    | 1.52E+01                     | 2.55E-01               | 0*                     | 1.47E+02         | 3.98E+00                   | -2.96E+00                   |
| Contribution to climate change-biogenic                      | kg CO2 eq       | 8.55E-01                    | 5.30E-02                     | 0*                     | 0*                     | 7.64E-01         | 3.82E-02                   | -6.56E-02                   |
| Contribution to climate change-land use and land use change  | e kg CO2 eq     | 3.57E-04                    | 3.56E-04                     | 0*                     | 0*                     | 0*               | 6.34E-07                   | 0.00E+00                    |
| Contribution to ozone depletion                              | kg CFC-11<br>eq | 2.47E-06                    | 1.87E-06                     | 3.91E-10               | 0*                     | 5.72E-07         | 2.40E-08                   | -5.29E-07                   |
| Contribution to acidification                                | mol H+ eq       | 8.13E-01                    | 1.26E-01                     | 1.64E-03               | 0*                     | 6.74E-01         | 1.11E-02                   | -4.61E-02                   |
| Contribution to eutrophication, freshwater                   | kg P eq         | 1.59E-03                    | 1.47E-04                     | 0*                     | 0*                     | 2.45E-04         | 1.20E-03                   | -7.19E-06                   |
| Contribution to eutrophication marine                        | kg N eq         | 1.01E-01                    | 1.28E-02                     | 7.71E-04               | 0*                     | 8.49E-02         | 2.27E-03                   | -1.92E-03                   |
| Contribution to eutrophication, terrestrial                  | mol N eq        | 1.17E+00                    | 1.37E-01                     | 8.46E-03               | 0*                     | 1.00E+00         | 2.67E-02                   | -2.21E-02                   |
| Contribution to photochemical ozone formation - human health | kg COVNM<br>eq  | 3.40E-01                    | 4.95E-02                     | 2.14E-03               | 0*                     | 2.80E-01         | 7.43E-03                   | -9.26E-03                   |
| Contribution to resource use, minerals and metals            | kg Sb eq        | 1.26E-02                    | 1.25E-02                     | 0*                     | 0*                     | 2.24E-05         | 3.83E-05                   | -7.84E-04                   |
| Contribution to resource use, fossils                        | MJ              | 3.59E+03                    | 2.72E+02                     | 3.56E+00               | 0*                     | 3.21E+03         | 1.05E+02                   | -5.82E+01                   |
| Contribution to water use                                    | m3 eq           | 1.76E+01                    | 8.44E+00                     | 0*                     | 0*                     | 7.43E+00         | 1.71E+00                   | -2.43E+00                   |

| Inventory flows Indicators                                                                                      | Power | Pact H-frame Mol            | ded Case Circu               | it Breaker with        | Micrologic™ Trip       | Unit - HJL36150 | U31X                       |                             |
|-----------------------------------------------------------------------------------------------------------------|-------|-----------------------------|------------------------------|------------------------|------------------------|-----------------|----------------------------|-----------------------------|
| Inventory flows                                                                                                 | Unit  | Total (without<br>Module D) | [A1 - A3] -<br>Manufacturing | [A4] -<br>Distribution | [A5] -<br>Installation | [B1 - B7] - Use | [C1 - C4] - End<br>of life | [D] - Benefits<br>and loads |
| Contribution to use of renewable primary energy excluding renewable primary energy used as raw material         | MJ    | 3.99E+02                    | 6.51E+00                     | 0*                     | 0*                     | 3.91E+02        | 9.50E-01                   | -1.62E+00                   |
| Contribution to use of renewable primary energy resources used as raw material                                  | MJ    | 5.74E+00                    | 5.74E+00                     | 0*                     | 0*                     | 0*              | 0*                         | 0.00E+00                    |
| Contribution to total use of renewable primary energy resources                                                 | MJ    | 4.05E+02                    | 1.23E+01                     | 0*                     | 0*                     | 3.91E+02        | 9.50E-01                   | -1.62E+00                   |
| Contribution to use of non renewable primary energy excluding non renewable primary energy used as raw material | MJ    | 3.56E+03                    | 2.45E+02                     | 3.56E+00               | 0*                     | 3.21E+03        | 1.05E+02                   | -5.78E+01                   |
| Contribution to use of non renewable primary energy resources used as raw material                              | MJ    | 2.67E+01                    | 2.67E+01                     | 0*                     | 0*                     | 0*              | 0*                         | -3.88E-01                   |
| Contribution to total use of non-renewable primary energy resources                                             | MJ    | 3.59E+03                    | 2.72E+02                     | 3.56E+00               | 0*                     | 3.21E+03        | 1.05E+02                   | -5.82E+01                   |
| Contribution to use of secondary material                                                                       | kg    | 4.75E-04                    | 4.75E-04                     | 0*                     | 0*                     | 0*              | 0*                         | 0.00E+00                    |
| Contribution to use of renewable secondary fuels                                                                | MJ    | 0.00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0.00E+00                    |
| Contribution to use of non renewable secondary fuels                                                            | MJ    | 0.00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0.00E+00                    |
| Contribution to net use of freshwater                                                                           | m³    | 4.10E-01                    | 1.97E-01                     | 0*                     | 0*                     | 1.73E-01        | 4.05E-02                   | -5.65E-02                   |
| Contribution to hazardous waste disposed                                                                        | kg    | 1.09E+02                    | 1.07E+02                     | 0*                     | 0*                     | 2.77E+00        | 2.57E-02                   | -6.50E+01                   |
| Contribution to non hazardous waste disposed                                                                    | kg    | 3.92E+01                    | 1.64E+01                     | 8.95E-03               | 0*                     | 2.19E+01        | 9.60E-01                   | -2.79E+00                   |
| Contribution to radioactive waste disposed                                                                      | kg    | 1.10E-02                    | 5.82E-03                     | 6.38E-06               | 0*                     | 5.18E-03        | 3.95E-05                   | -1.75E-03                   |
| Contribution to components for reuse                                                                            | kg    | 0.00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0.00E+00                    |
| Contribution to materials for recycling                                                                         | kg    | 7.93E-01                    | 8.35E-02                     | 0*                     | 0*                     | 0*              | 7.10E-01                   | 0.00E+00                    |
| Contribution to materials for energy recovery                                                                   | kg    | 0.00E+00                    | 0*                           | 0*                     | 0*                     | 0*              | 0*                         | 0.00E+00                    |
| Contribution to exported energy                                                                                 | MJ    | 7.39E-03                    | 4.54E-04                     | 0*                     | 0*                     | 0*              | 6.94E-03                   | 0.00E+00                    |

<sup>\*</sup> represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product kg of C 0.00E+00 Contribution to biogenic carbon content of the associated packaging kg of C 7.57E-02

<sup>\*</sup> The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

| Mandatory Indicators                                         | PowerF          | Pact H-fr       | ame Molded C | ase Circui | t Break | er with M | icrologic™ Trip | Unit - HJL36150U31X |      |
|--------------------------------------------------------------|-----------------|-----------------|--------------|------------|---------|-----------|-----------------|---------------------|------|
| Impact indicators                                            | Unit            | [B1 - B7] - Use | [B1]         | [B2]       | [B3]    | [B4]      | [B5]            | [B6]                | [B7] |
| Contribution to climate change                               | kg CO2 eq       | 1.48E+02        | 0*           | 0*         | 0*      | 0*        | 0*              | 1.48E+02            | 0*   |
| Contribution to climate change-fossil                        | kg CO2 eq       | 1.47E+02        | 0*           | 0*         | 0*      | 0*        | 0*              | 1.47E+02            | 0*   |
| Contribution to climate change-biogenic                      | kg CO2 eq       | 7.64E-01        | 0*           | 0*         | 0*      | 0*        | 0*              | 7.64E-01            | 0*   |
| Contribution to climate change-land use and land use change  | e kg CO2 eq     | 0*              | 0*           | 0*         | 0*      | 0*        | 0*              | 0*                  | 0*   |
| Contribution to ozone depletion                              | kg CFC-11<br>eq | 5.72E-07        | 0*           | 0*         | 0*      | 0*        | 0*              | 5.72E-07            | 0*   |
| Contribution to acidification                                | mol H+ eq       | 6.74E-01        | 0*           | 0*         | 0*      | 0*        | 0*              | 6.74E-01            | 0*   |
| Contribution to eutrophication, freshwater                   | kg P eq         | 2.45E-04        | 0*           | 0*         | 0*      | 0*        | 0*              | 2.45E-04            | 0*   |
| Contribution to eutrophication marine                        | kg N eq         | 8.49E-02        | 0*           | 0*         | 0*      | 0*        | 0*              | 8.49E-02            | 0*   |
| Contribution to eutrophication, terrestrial                  | mol N eq        | 1.00E+00        | 0*           | 0*         | 0*      | 0*        | 0*              | 1.00E+00            | 0*   |
| Contribution to photochemical ozone formation - human health | kg COVNM<br>eq  | 2.80E-01        | 0*           | 0*         | 0*      | 0*        | 0*              | 2.80E-01            | 0*   |
| Contribution to resource use, minerals and metals            | kg Sb eq        | 2.24E-05        | 0*           | 0*         | 0*      | 0*        | 0*              | 2.24E-05            | 0*   |
| Contribution to resource use, fossils                        | MJ              | 3.21E+03        | 0*           | 0*         | 0*      | 0*        | 0*              | 3.21E+03            | 0*   |
| Contribution to water use                                    | m3 eq           | 7.43E+00        | 0*           | 0*         | 0*      | 0*        | 0*              | 7.43E+00            | 0*   |

| Inventory flows Indicators                                                                                |      | Powerl          | Pact H-fra | ame Molded C | ase Circui | it Breake | er with M | icrologic™ Tri <sub>l</sub> | o Unit - H |
|-----------------------------------------------------------------------------------------------------------|------|-----------------|------------|--------------|------------|-----------|-----------|-----------------------------|------------|
| Inventory flows                                                                                           | Unit | [B1 - B7] - Use | [B1]       | [B2]         | [B3]       | [B4]      | [B5]      | [B6]                        | [B7]       |
| Contribution to use of renewable primary energy excluding<br>enewable primary energy used as raw material | MJ   | 3.91E+02        | 0*         | 0*           | 0*         | 0*        | 0*        | 3.91E+02                    | 0*         |
| ontribution to use of renewable primary energy resources sed as raw material                              | MJ   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| ontribution to total use of renewable primary energy sources                                              | MJ   | 3.91E+02        | 0*         | 0*           | 0*         | 0*        | 0*        | 3.91E+02                    | 0*         |
| ntribution to use of non renewable primary energy cluding non renewable primary energy used as raw terial | MJ   | 3.21E+03        | 0*         | 0*           | 0*         | 0*        | 0*        | 3.21E+03                    | 0*         |
| ntribution to use of non renewable primary energy ources used as raw material                             | MJ   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| tribution to total use of non-renewable primary energy ources                                             | MJ   | 3.21E+03        | 0*         | 0*           | 0*         | 0*        | 0*        | 3.21E+03                    | 0*         |
| ntribution to use of secondary material                                                                   | kg   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| ribution to use of renewable secondary fuels                                                              | MJ   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| bution to use of non renewable secondary fuels                                                            | MJ   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| bution to net use of freshwater                                                                           | m³   | 1.73E-01        | 0*         | 0*           | 0*         | 0*        | 0*        | 1.73E-01                    | 0*         |
| ibution to hazardous waste disposed                                                                       | kg   | 2.77E+00        | 0*         | 0*           | 0*         | 0*        | 0*        | 2.77E+00                    | 0*         |
| bution to non hazardous waste disposed                                                                    | kg   | 2.19E+01        | 0*         | 0*           | 0*         | 0*        | 0*        | 2.19E+01                    | 0*         |
| bution to radioactive waste disposed                                                                      | kg   | 5.18E-03        | 0*         | 0*           | 0*         | 0*        | 0*        | 5.18E-03                    | 0*         |
| bution to components for reuse                                                                            | kg   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| oution to materials for recycling                                                                         | kg   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| ibution to materials for energy recovery                                                                  | kg   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |
| ribution to exported energy                                                                               | MJ   | 0*              | 0*         | 0*           | 0*         | 0*        | 0*        | 0*                          | 0*         |

<sup>\*</sup> represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2024-01 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

| Registration number:                                                                                                                                                           | SCHN-02017-V01.01-EN | Drafting rules                      | PEP-PCR-ed4-2021 09 06  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|-------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                |                      | Supplemented by                     | PSR-0005-ed3-2023 06 06 |  |  |  |  |  |  |
| Verifier accreditation N°                                                                                                                                                      | VH45                 | Information and reference documents | www.pep-ecopassport.org |  |  |  |  |  |  |
| Date of issue                                                                                                                                                                  | 04-2025              | Validity period                     | 5 years                 |  |  |  |  |  |  |
| Independent verification of the declaration and data, in compliance with ISO 14025 : 2006                                                                                      |                      |                                     |                         |  |  |  |  |  |  |
| Internal External X                                                                                                                                                            |                      |                                     |                         |  |  |  |  |  |  |
| The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)                                                                                          |                      |                                     |                         |  |  |  |  |  |  |
| PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022                                                                                                |                      |                                     |                         |  |  |  |  |  |  |
| PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022  The components of the present PEP may not be compared with components from any other program. |                      |                                     |                         |  |  |  |  |  |  |
| Document complies with ISO 14025:2006 "Environmental labels and declarations. Type III environmental declarations"                                                             |                      |                                     |                         |  |  |  |  |  |  |

Schneider Electric Industries SAS
Country Customer Care Center
http://www.se.com/contact
Head Office
35, rue Joseph Monier
CS 30323
F- 92500 Rueil Malmaison Cedex
RCS Nanterre 954 503 439
Capital social 928 298 512 €

www.se.com SCHN-02017-V01.01-EN Published by Schneider Electric

©2024 - Schneider Electric – All rights reserved

04-2025