

TY-RAP® CABLE TIES

PEP ecopassport[®] Product Environmental Profile

Product Environmental Profile - PEP Ecopassport.

Document in compliance with ISO 14025: 2006 "Environmental labels and declarations. Type III environmental declarations"

ORGANIZATION		CONTACT INFORMATION				
ABB HU		Oscar Sarmiento Penuela - oscar.sarmiento-penuela@ch.abb.com				
ADDRESS		WEBSITE				
ABB HU - Kecskemét, Kadafalva-Helipo	ort, (HU)	abb.com				
STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00610-V01.02-EN	1	en	1/18	
© Copyright 2024 ABB All rights reser	wed	·				

© Copyright 2024 ABB. All rights reserved.

ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

Reference product	Product TY28MX
Description of the product	Ty-Raps® are cable ties characterized by a corrosion-resistant, non- magnetic stainless-steel locking barb in its head grips tightly and allows for a completely adjustable fit. Moreover, its raised tail makes it easy to pick up, even with gloved hand, and its easy-grip tail surface makes it easy to pull tight, even in wet or cold conditions.
Functional unit	The functional unit is to mount a cable or a tube at a point with a cable tie with a clamping capacity between 1.5 mm and 229 mm for a reference lifetime of 20 years. The reference product is one piece of TY28MX cable tie with a weight of 2.633 g and its packaging of 0.4325 g.
Other products covered	List of other products covered in this PEP is presented in the paragraph which concerned the extrapolation rules

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE			
Approved	Public	ABBG-00610-V01.02-EN	1	en	2/18			
© Copyright 2024 ABB. All rights reserved.								

Plastics as % of	stics as % of weight		Metals as % of weight		weight
Name and CAS number	Weight%	Name and CAS number	Weight%	Name and CAS number	Weight%
Nylon	85.3	Steel	0.6	Low density polyethylene	1.2
-	-	-	-	Label	0.0
-	-	-	-	Cardboard	3.8
-	-	-	-	Wood	9.1

Total weight of the reference product 2.633 g plus packaging 0.4325 g $\,$

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00610-V01.02-EN	1	en	3/18
© Copyright 2024 ABB. All rights reser	ved.				

Manufacturing	The manufacturing stage includes the production and transportation to the manufacturer's last logistic platform of Ty-Rap® cable ties and its packaging. The final assembly of the product is carried out at ABB's plant located in Kecskemét, Kadafalva-Heliport, (HU)
Distribution	The transport from ABB HU factory to storage (Belgium) site was taken into account. For the distribution of the product from storage to the final customer, secondary data for the distance has been used for lorry and a weighted average has been computed relative to distances with a cut-off about 10%.
Installation	No installation materials are required in the life cycle of the product. During this phase there is the disposal of the excess cable tie cut and the packaging.
Use	No material and energy consumption occur during the use stage. No maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered equal to zero in the respective results section.
End of life	The default end-of-life scenario provided by the PCR document has been adopted for the the Ty-Rap® cable ties (100% incineration).
Benefits and loads beyond the system boundaries	No benefits and loads beyond the system boundaries has been considered.

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE			
Approved	Public	ABBG-00610-V01.02-EN	1 en		4/18			
© Copyright 2024 ABB. All rights reserved.								

Environmental Impacts

Reference lifetime	20 years
Product category	PCR-ed4-EN-2021 09 06 PSR-0003-ed2-EN-2023 06 06
Installation elements	No installation materials are required in the life cycle of the product. During this phase there is the disposal of the excess cable tie cut
Use scenario	No material and energy consumption occur during the use stage. No maintenance phase is planned for the the Ty-Rap® cable ties.
Geographical and temporal representativeness	The geographical representativeness is global. All primary data collected from ABB are from 2022, which is a representative production year. Secondary data refers to the ecoinvent database v3.9.1 published in 2022. The temporal coverage for each secondary process used in the LCA model is specified in the metadata section of the ecoivent database
Technological representativeness	Technological representativeness refers to the specific production process for primary data.
Software and database used	SimaPro 9.5 and ecoinvent 3.9.1
Energy model used	
Manufacturing	The energy-related processes used for the inputs of the manufacturing stage are those included in the ecoinvent 3.9.1 datasets selected for the analysis.
Installation	No energy consumption occur during the installation stage.
Use	No energy consumption occur during the use stage.
End of life	The energy-related processes used for the inputs of the end-of-life

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00610-V01.02-EN	1	en	5/18
© Copyright 2024 ABB. All rights reser	ved.				

Common base of mandatory indicators

Environmental impact indicators

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
GWP-total	kg CO ₂ eq.	3.76E-02	3.01E-02	7.39E-04	2.70E-03	0.00E+00	4.04E-03	0.00E+00
GWP-fossil	kg CO ₂ eq.	3.74E-02	3.04E-02	7.38E-04	2.22E-03	0.00E+00	4.04E-03	0.00E+00
GWP-biogenic	kg CO ₂ eq.	1.83E-04	-2.93E-04	5.25E-07	4.75E-04	0.00E+00	5.47E-07	0.00E+00
GWP-luluc	kg CO ₂ eq.	1.33E-05	1.27E-05	3.64E-07	5.35E-08	0.00E+00	1.01E-07	0.00E+00
GWP-fossil = Globa GWP-biogenic = Glo GWP-luluc = Global	obal Warming Pot	ential bioge	nic	ange				
ODP	kg CFC-11 eq.	3.51E-10	3.00E-10	1.59E-11	1.21E-11	0.00E+00	2.27E-11	0.00E+00
ODP = Depletion po	otential of the str	atospheric o	ozone layer					
AP	H+ eq.	1.34E-04	1.27E-04	4.27E-06	6.67E-07	0.00E+00	1.20E-06	0.00E+00
AP = Acidification p	potential, Accumu	lated Excee	dance					
EP-freshwater	kg P eq.	9.76E-06	9.66E-06	5.11E-08	1.50E-08	0.00E+00	2.52E-08	0.00E+00
EP-marine	kg N eq.	4.72E-05	4.48E-05	1.44E-06	3.89E-07	0.00E+00	5.96E-07	0.00E+00
EP-terrestrial	mol N eq.	2.71E-04	2.47E-04	1.55E-05	3.04E-06	0.00E+00	5.45E-06	0.00E+00
EP-terrestrial EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut	trophication pot	ential, fraction o	on of nutrients f nutrients read	reaching freshwat	er end compart		5.45E-06	0.00E+00
EP-freshwater = Eu EP-marine = Eutrop	trophication pot	ential, fraction o	on of nutrients f nutrients read	reaching freshwat	er end compart		5.45E-06 1.50E-06	
EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut	trophication potentia phication potentia phication potentia trophication pote kg NMVOC eq.	ential, fraction o ntial, Accum 8.97E-05	on of nutrients f nutrients readulated Exceeda 8.20E-05	reaching freshwat ching marine end c ance	er end compart compartment	ment		
EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP	trophication potentia phication potentia phication potentia trophication pote kg NMVOC eq.	ential, fraction o ntial, Accum 8.97E-05	on of nutrients f nutrients readulated Exceeda 8.20E-05	reaching freshwat ching marine end c ance	er end compart compartment	ment		0.00E+00
EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals &	trophication pot ohication potentii rophication pote kg NMVOC eq. potential of trop	ential, fracti al, fraction o ntial, Accum 8.97E-05 ospheric ozc	on of nutrients f nutrients read ulated Exceeda 8.20E-05	reaching freshwat ching marine end c ance 5.40E-06	er end compart compartment 8.35E-07	0.00E+00	1.50E-06	0.00E+00
EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals & metals	trophication pot shication potentia crophication pote kg NMVOC eq. potential of trop kg Sb eq. MJ stals = Abiotic dep	ential, fraction al, fraction o ntial, Accum 8.97E-05 ospheric ozc 3.30E-08 5.70E-01 oletion poter	on of nutrients f nutrients read ulated Exceeds 8.20E-05 one 3.02E-08 5.57E-01 ntial for non-for	reaching freshwat ching marine end c ince 5.40E-06 1.92E-09 1.07E-02	8.35E-07 2.90E-10	0.00E+00	1.50E-06 5.53E-10	0.00E+00 0.00E+00
EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-minerals & me	trophication pot shication potentia crophication pote kg NMVOC eq. potential of trop kg Sb eq. MJ stals = Abiotic dep	ential, fraction al, fraction o ntial, Accum 8.97E-05 ospheric ozc 3.30E-08 5.70E-01 oletion poter	on of nutrients f nutrients read ulated Exceeds 8.20E-05 one 3.02E-08 5.57E-01 ntial for non-for	reaching freshwat ching marine end c ince 5.40E-06 1.92E-09 1.07E-02	8.35E-07 2.90E-10	0.00E+00	1.50E-06 5.53E-10	0.00E+00 0.00E+00
EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eut POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-fossil = Abioti	trophication pot bhication potentia trophication potentia trophication potential eq. potential of trophication kg Sb eq. MJ ttals = Abiotic dep c depletion for for m ^a eq. depr.	ential, fractiin al, fraction o ntial, Accum 8.97E-05 ospheric ozc 3.30E-08 5.70E-01 oletion poter ssil resource	on of nutrients read ulated Exceeds 8.20E-05 one 3.02E-08 5.57E-01 ntial for non-for es potential	reaching freshwat ching marine end o ince 5.40E-06 1.92E-09 1.07E-02 ssil resources	8.35E-07 2.90E-10 7.08E-04	0.00E+00 0.00E+00 0.00E+00	1.50E-06 5.53E-10 1.47E-03	0.00E+00 0.00E+00 0.00E+00
EP-freshwater = Eu EP-marine = Eutrop EP-terrestrial = Eutrop POCP POCP = Formation ADP-minerals & metals ADP-fossil ADP-fossil = Abiotic WDP	trophication pot bhication potentia cophication potentia kg NMVOC eq. potential of trop kg Sb eq. MJ ttals = Abiotic dep c depletion for fo m³ eq. depr. ivation potential	ential, fractiin al, fraction o ntial, Accum 8.97E-05 ospheric ozc 3.30E-08 5.70E-01 oletion poter ssil resource	on of nutrients read ulated Exceeds 8.20E-05 one 3.02E-08 5.57E-01 ntial for non-for es potential	reaching freshwat ching marine end o ince 5.40E-06 1.92E-09 1.07E-02 ssil resources	2.90E-10 7.08E-04 3.21E-05	0.00E+00 0.00E+00 0.00E+00	1.50E-06 5.53E-10 1.47E-03	0.00E+00 0.00E+00 0.00E+00

Common base of mandatory indicators

Inventory flows indicator - Resource use indicators

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
PERE	MJ	2.78E-02	2.75E-02	1.53E-04	4.95E-05	0.00E+00	8.12E-05	0.00E+00
PERM	MJ	7.72E-03	7.72E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	3.55E-02	3.52E-02	1.53E-04	4.95E-05	0.00E+00	8.12E-05	0.00E+00
PENRE	MJ	4.69E-01	4.56E-01	1.07E-02	7.08E-04	0.00E+00	1.47E-03	0.00E+00
PENRM	MJ	1.01E-01	1.01E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	5.70E-01	5.57E-01	1.07E-02	7.08E-04	0.00E+00	1.47E-03	0.00E+00

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total Use of renewable primary energy resources

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total Use of non-renewable primary energy resources

Inventory flows indicator – Indicators describing the use of secondary materials, water, and energy resources

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
SM	kg	9.16E-04	9.16E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m³	6.48E-04	6.43E-04	1.64E-06	1.35E-06	0.00E+00	2.32E-06	0.00E+00
SM = Use of seco	ndary material							

SM = Use of secondary material

RSF = Use of renewable secondary fuels

NRSF = Use of non-renewable secondary fuels

FW = Use of net fresh water

Inventory flows indicator - Waste category indicators

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
Hazardous waste disposed	kg	6.69E-07	5.90E-07	6.60E-08	3.92E-09	0.00E+00	8.75E-09	0.00E+00
Non- hazardous waste disposed	kg	4.08E-03	2.97E-03	8.94E-04	1.47E-04	0.00E+00	7.30E-05	0.00E+00
Radioactive waste disposed	kg	1.55E-06	1.54E-06	3.17E-09	1.03E-09	0.00E+00	1.63E-09	0.00E+00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00610-V01.02-EN	1	en	7/18	
© Copyright 2024 ABB. All rights reserved.						

Common base of mandatory indicators

Inventory flows indicator – Output flow indicators

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
Components for re- use	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for recycling	kg	1.21E-03	1.03E-03	0.00E+00	1.80E-04	0.00E+00	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy	MJ	3.25E-02	7.78E-05	0.00E+00	1.20E-02	0.00E+00	2.05E-02	0.00E+00

Inventory flow indicator – other indicators

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
Biogenic carbon content of the product	kg of C	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Biogenic carbon content of the associated packaging	kg of C	1.30E-04	1.30E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00610-V01.02-EN	1	en	8/18
© Copyright 2024 ABB. All rights reser	ved.				

Optional indicators

Environmental indicators

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
Total use of primary energy during the life cycle	MJ	6.05E-01	5.92E-01	1.09E-02	7.57E-04	0.00E+00	1.55E-03	0.00E+00
Emissions of fine particles	incidence of diseases	1.21E-09	1.12E-09	7.28E-11	5.82E-12	0.00E+00	1.09E-11	0.00E+00
lonizing radiation, human health	kBq U235 eq.	6.49E-03	6.47E-03	1.31E-05	4.01E-06	0.00E+00	6.33E-06	0.00E+00
Ecotoxicity (fresh water)	CTUe	8.02E-02	5.93E-02	5.18E-03	5.51E-03	0.00E+00	1.01E-02	0.00E+00
Human toxicity, car-cinogenic effects	CTUh	1.01E-11	8.61E-12	3.21E-13	4.38E-13	0.00E+00	7.50E-13	0.00E+00
Human toxicity, non-carcinogenic effects	incidence of diseases	1.23E-10	1.05E-10	7.47E-12	3.71E-12	0.00E+00	6.58E-12	0.00E+00
Impact related to land use/soil quality		1.32E-01	1.21E-01	1.04E-02	3.25E-04	0.00E+00	6.41E-04	0.00E+00

Other indicators

Indicator	Unit	Total	Manu- facturing	Distri-bution	Installation	Use	End of life	Bene- fits
No Other indicators used								

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00610-V01.02-EN	1	en	9/18
© Copyright 2024 ABB. All rights reserved.					

Approach for extrapolation rules applied to a homogeneous environmental family

The PEP can cover products different from the reference product if they belong to a homogeneous environmental family. This means that the group of products must satisfy the following characteristics:

- same function;
- same product standard;
- same manufacturing technology: the same type of materials and same manufacturing processes.

The Ty-Rap® cable ties product family satisfy these conditions, so extrapolation rules were applied to assess the environmental impact of the products belonging to the family, following the PCR indication. No extrapolation rules for cable management products are set in the PSR, thus the next steps have been followed to define the extrapolation rules:

- Analyse the products covered by the PEP belonging to the same homogenous family;
- Perform the LCA of a representative product of the homogeneous family;
- Identify and quantify the product parameters that vary between the various products of the homogeneous environmental family (i.e. dimensions, the weight of parts, materials, energy consumption, etc.).

Lastly, a sensitivity analysis was performed for each life cycle stage to identify which parameters of the ones selected are sensitive to environmental impacts to create extrapolation rules.

The parameters identified are listed below:

- ties weight;
- packaging weight;
- ties composition (nylon and steel);
- input of recycled nylon.

The representative product considered for the calculation of the extrapolation rules is TY28MX. This product is most representative for the sales.

The products included in the Ty-Rap[®] cable ties product family and considered for the application of the extrapolation rules are resented in the following table.

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00610-V01.02-EN	1	en	10/18
© Copyright 2024 ABB	All rights reserved.				

Variant	Weight of the cable tie (g)	Weight of the packaging (g)	Weight of the cable tie + weight of the packaging (g)
TY232M	5.01E-01	3.54E-01	8.55E-01
TY232M-1	5.05E-01	3.25E-01	8.30E-01
TY232M-3	5.05E-01	3.25E-01	8.30E-01
TY232M-5	5.05E-01	3.25E-01	8.30E-01
TY232M-7	5.05E-01	3.25E-01	8.30E-01
TY232M-9	5.05E-01	3.25E-01	8.30E-01
TY232MX	4.98E-01	1.55E-01	6.53E-01
TY232MX-RW	5.24E-01	1.04E-01	6.29E-01
TY23M	2.16E-01	8.65E-01	1.08E+00
TY23M-0	2.16E-01	8.65E-01	1.08E+00
TY23M-2	2.16E-01	8.65E-01	1.08E+00
TY23MFR	2.18E-01	6.33E-02	2.82E-01
TY23MFR-RW			
TY23MK	2.18E-01 2.14E-01	6.33E-02 6.33E-02	2.82E-01 2.78E-01
-			
TY23MX-RW	2.14E-01	6.33E-02	2.78E-01
TY242M	8.22E-01	1.70E-01	9.92E-01
TY242M-0	8.18E-01	1.70E-01	9.88E-01
TY242M-1	8.18E-01	1.70E-01	9.88E-01
TY242M-5	8.18E-01	1.70E-01	9.88E-01
TY242M-7	8.18E-01	1.70E-01	9.88E-01
TY242MX	8.23E-01	2.76E-01	1.10E+00
TY242MX-RW	8.23E-01	2.76E-01	1.10E+00
TY244M	1.63E+00	3.26E-01	1.95E+00
TY244M-2	1.63E+00	3.26E-01	1.95E+00
TY244M-4	1.63E+00	3.26E-01	1.95E+00
TY244M-6	1.63E+00	3.26E-01	1.95E+00
TY244MX	1.61E+00	2.43E-01	1.86E+00
TY244MX-RW	1.61E+00	3.26E-01	1.94E+00
TY24M	5.47E-01	1.33E-01	6.80E-01
TY24M-0	5.47E-01	1.69E-01	7.16E-01
TY24M-1	5.47E-01	1.45E-01	6.93E-01
TY24M-2	5.47E-01	1.45E-01	6.93E-01
TY24MFR	5.51E-01	1.33E-01	6.84E-01
TY24MFR-RW	5.51E-01	1.33E-01	6.84E-01
TY24MX	5.32E-01	1.33E-01	6.66E-01
TY24MX-RW	5.47E-01	1.33E-01	6.80E-01
TY253M	1.91E+00	4.28E-01	2.34E+00
TY253M-0	1.93E+00	1.50E-01	2.08E+00
TY253M-1	1.93E+00	1.50E-01	2.08E+00
TY253M-3	1.93E+00	1.50E-01	2.08E+00
TY253M-5	1.93E+00	1.50E-01	2.08E+00
TY253MX	1.86E+00	4.28E-01	2.29E+00
TY253MX-RW	1.87E+00	2.93E-01	2.16E+00
TY25M	1.21E+00	2.35E-01	1.45E+00
TY25M-2	1.19E+00	1.53E-01	1.34E+00
TY25M-5	1.19E+00	1.53E-01	1.34E+00
TY25MFR	1.29E+00	1.53E-01	1.44E+00
TY25MFR-RW	1.29E+00	1.53E-01	1.44E+00
TY25MX	1.19E+00	2.20E-01	1.44E+00
TY25MX-RW	1.19E+00 1.21E+00	1.53E-01	1.36E+00
TY26M		1.53E-01 1.47E-01	
	8.01E-01		9.48E-01
TY26M-0	1.17E+00	2.22E-01	1.39E+00
TY26M-1	1.17E+00	2.22E-01	1.39E+00
TY26M-2	1.17E+00	2.22E-01	1.39E+00
TY26M-7	1.17E+00	2.22E-01	1.39E+00
TY26MX	1.17E+00	2.39E-01	1.41E+00
TY26MX-RW	1.15E+00	1.54E-01	1.31E+00
TY271MX	2.14E+00	4.44E-01	2.58E+00
TY272M	2.99E+00	3.74E-01	3.37E+00
TY272MX	2.91E+00	3.74E-01	3.28E+00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00610-V01.02-EN	1	en	11/18
© Copyright 2024 ABB. All rights re	served.				

Variant	Weight of the cable tie (g)	packaging (g)	
TY272MX-RW	2 01E+00	1.66E-01	packaging (g) 3.08E+00
TY272MX-RW TY27M	2.91E+00		
	4.39E+00	7.56E-01	5.15E+00
TY27M-0 TY27M-2	4.33E+00 4.33E+00	7.39E-01 5.82E-01	5.07E+00 4.91E+00
TY27M-2	4.33E+00		4.91E+00 4.67E+00
TY27M-8		3.42E-01	
	4.33E+00	3.42E-01	4.67E+00
TY27MFR	4.39E+00	1.13E+00	5.52E+00
TY27MFR-RW	4.39E+00	1.20E+00	5.59E+00
TY27MX TY27MX-RW	4.18E+00	7.39E-01	4.92E+00
	4.18E+00	3.42E-01	4.52E+00
TY28M	2.72E+00	4.37E-01	3.16E+00
TY28M-0	2.57E+00	4.32E-01	3.00E+00
TY28M-2	2.57E+00	2.98E-01	2.87E+00
TY28M-8	2.57E+00	1.55E-01	2.72E+00
TY28MFR	2.65E+00	5.40E-01	3.19E+00
TY28MFR-RW	2.65E+00	6.71E-01	3.32E+00
TY28MX	2.63E+00	4.32E-01	3.06E+00
TY28MX-RW	2.65E+00	2.98E-01	2.95E+00
TY29M	9.32E+00	1.92E+00	1.12E+01
TY29M-2	9.18E+00	1.92E+00	1.11E+01
TY29M-3	9.18E+00	9.00E-01	1.01E+01
TY29M-6	9.18E+00	2.15E+00	1.13E+01
TY29MX	8.98E+00	1.92E+00	1.09E+01
TY29MX-RW	8.98E+00	9.00E-01	9.88E+00
TY5232MR	5.05E-01	2.74E-01	7.79E-01
TY5232MXR	5.24E-01	2.74E-01	7.98E-01
TY523MR	2.16E-01	1.84E-01	4.00E-01
TY523MXR	2.14E-01	1.87E-01	4.01E-01
TY523MXR-RW	2.14E-01	1.79E-01	3.93E-01
TY5242MR	8.18E-01	2.76E-01	1.09E+00
TY5242MXR	8.23E-01	2.76E-01	1.10E+00
TY5244M	1.63E+00	8.37E-01	2.46E+00
TY5244MR	1.63E+00	4.80E-01	2.11E+00
TY5244MX	1.61E+00	8.37E-01	2.45E+00
TY5244MXR	1.61E+00	4.80E-01	2.09E+00
TY524MR	5.47E-01	4.06E-01	9.53E-01
TY524MXR	5.47E-01	2.48E-01	7.95E-01
TY524MXR-RW	5.47E-01	2.48E-01	7.95E-01
TY5253MR	1.88E+00	4.72E-01	2.35E+00
TY5253MXR	1.87E+00	4.68E-01	2.33E+00
TY525MR	1.19E+00	4.72E-01	1.66E+00
TY525MXR	1.19E+00	3.73E-01	1.56E+00
TY526MR	1.17E+00	7.48E-01	1.92E+00
TY526MXR	1.15E+00	3.66E-01	1.52E+00
TY5271MXR	2.14E+00	6.88E-01	2.82E+00
TY5272MR	2.99E+00	7.32E-01	3.72E+00
TY5272MXR	2.99E+00	7.32E-01	3.64E+00
TY527MR	4.33E+00	1.05E+00	5.38E+00
TY527MXR	4.18E+00	9.25E-01	5.11E+00
TY528MR	2.57E+00	6.85E-01	3.25E+00
TY528MXR	2.63E+00	9.86E-01	3.62E+00
TY529M	9.18E+00	1.81E+00	1.10E+01
TY529MX	8.98E+00	2.34E+00	1.13E+01
TY53510M	1.28E+01	5.06E+00	1.79E+01
TY53510M-3	1.28E+01	5.06E+00	1.79E+01
TY53510M-4	1.28E+01	5.06E+00	1.79E+01
TY53510M-6	1.28E+01	5.06E+00	1.79E+01
TY53510MX	1.31E+01	3.76E+00	1.69E+01
TY54513M	1.62E+01	5.64E+00	2.19E+01
TY54513M-2	1.62E+01	5.64E+00	2.19E+01

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00610-V01.02-EN	1	en	12/18	
© Copyright 2024 ABB. All rights reserved.						

Variant	Weight of the cable tie (g)	Weight of the packaging (g)	Weight of the cable tie + weight of the packaging (g)
TY54513MX	1.64E+01	5.64E+00	2.20E+01
TY54SM	7.21E-01	1.47E+00	2.19E+00
TYB232M	5.06E-01	1.48E-01	6.54E-01
TYB232MX	5.24E-01	2.42E-01	7.67E-01
TYB23M	2.20E-01	1.58E-01	3.78E-01
TYB23M-0	2.16E-01	1.11E-01	3.28E-01
TYB23M-2	2.16E-01	1.11E-01	3.28E-01
TYB23MX	2.14E-01	1.11E-01	3.26E-01
TYB24M	5.55E-01	2.24E-01	7.79E-01
TYB24M-0	5.47E-01	2.24E-01	7.71E-01
TYB24MX	5.32E-01	2.14E-01	7.46E-01
TYB25M	1.21E+00	3.88E-01	1.60E+00
TYB25M-0	1.19E+00	3.88E-01	1.58E+00
TYB25M-2	1.19E+00	3.88E-01	1.58E+00
TYB25M-6	1.19E+00	3.88E-01	1.58E+00
TYB25MX	1.19E+00	3.89E-01	1.58E+00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00610-V01.02-EN	1	en	13/18	
Approved Public ABBG-00610-V01.02-EN 1 en 13/18 © Copyright 2024 ABB. All rights reserved. I I I I I						

Extrapolation rules

The extrapolation rules have been calculated based on the environmental impact assessment results considering all the 23 products, and the sensitivity analysis carried out to individuate the influential parameters.

For the manufacturing stage, distribution stage and end-of-life stage, the influential parameters considered for the calculation of the LCIA impacts of the variants are the ties weight, packaging weight and ties composition (nylon and steel). For the end-of-life stage, the influential parameters considered for the calculation of the LCIA impacts of the variants are the ties weight and ties composition (nylon and steel). For the installation stage, the influential parameter considered for the calculation of the LCIA impacts of the variants are the ties weight and ties composition (nylon and steel). For the installation stage, the influential parameter considered for the calculation of the LCIA impacts of the variants is the packaging weight. The calculation of the LCIA impacts of the variants through these parameters indicated that the correlation between the impacts of the representative product and the variants is linear. For the creation of extrapolation rules, the extrapolation principle applied is a linear correlation between the impacts and weight of cable ties for the production and end-of-life stages, and between the impacts and weight of the cable tie + weight of the packaging for the distribution and installation stages.

Each environmental indicator value shall be calculated using the following formulas:

• For the manufacturing and end-of-life stages:

$$y = a_n x_1 + b_n$$

where x_1 is the weight of the cable tie (g);

For distribution and installation stages:

$$y = a_n x_2 + b_n$$

where x_2 is the weight of the cable tie (g) + weight of the packaging referred to the functional unit (g).

For the weight of the cable tie + weight of the packaging of all the variants, please refer to the table above.

The calculation of the coefficients a&b for the Use Stage was not performed because the selected parameters do not affect the values for this stage.

The following table reports the linear coefficients an & bn for each life cycle stage

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00610-V01.02-EN	1	en	14/18	
© Copyright 2024 ABB. All rights reserved.						

IMPACT CATEGORY	MANUFA	CTURING	DISTRI	BUTION	INSTAL	LATION	U	SE	END C	OF LIFE
	a 1	bı	a 2	b ₂	a 3	b3	a 4	b4	a 5	b₅
Climate change	1.16E-02	4.25E-03	2.41E-04	-7.98E-09	1.00E-03	-2.28E-04	-	-	1.54E-03	-2.06E-0
Climate change - Fossil	1.19E-02	3.91E-03	2.41E-04	-7.97E-09	6.89E-04	1.81E-05	-	-	1.54E-03	-2.06E-0
Climate change - Biogenic	-3.33E-04	3.33E-04	1.71E-07	-5.67E-12	3.11E-04	-2.46E-04	-	-	2.03E-07	1.54E-0
Climate change - Land use and LU change	4.99E-06	1.29E-06	1.19E-07	-3.93E-12	2.02E-08	-3.91E-09	-	-	3.86E-08	-2.93E-1
Ozone depletion	1.13E-10	2.61E-11	5.19E-12	-1.72E-16	3.71E-12	2.30E-13	-	-	8.64E-12	-1.09E-1
Acidification	5.04E-05	1.54E-05	1.39E-06	-4.61E-11	2.37E-07	-2.65E-08	-	-	4.58E-07	-4.37E-0
Eutrophication, freshwater	3.77E-06	1.73E-07	1.67E-08	-5.51E-13	5.50E-09	-8.58E-10	-	-	9.54E-09	6.00E-1
Eutrophication, marine	1.77E-05	5.92E-06	4.69E-07	-1.55E-11	1.46E-07	-2.32E-08	-	-	2.27E-07	-2.41E-0
Eutrophication, terrestrial	9.82E-05	3.01E-05	5.05E-06	-1.67E-10	1.06E-06	-9.65E-08	-	-	2.07E-06	-2.09E-0
Photochemical ozone formation	3.26E-05	9.71E-06	1.76E-06	-5.84E-11	3.05E-07	-4.17E-08	-	-	5.71E-07	-5.09E-0
Resource use, minerals and metals	1.16E-08	4.97E-09	6.27E-10	-2.08E-14	1.16E-10	-2.76E-11	-	-	2.10E-10	-1.63E-1
Resource use, fossils	2.18E-01	5.94E-02	3.51E-03	-1.16E-07	3.10E-04	-9.97E-05	-	-	5.58E-04	-1.33E-0
Water use (from AWARE)	9.79E-03	3.87E-03	1.63E-05	-5.38E-10	1.03E-05	-4.46E-08	-	-	2.23E-05	-4.55E-0
PERE	1.29E-02	-2.41E-03	4.99E-05	-1.65E-09	1.85E-05	-3.22E-06	-	-	3.09E-05	-3.13E-0
PERM	4.52E-03	-1.35E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+0
PERT	1.74E-02	-3.76E-03	4.99E-05	-1.65E-09	1.85E-05	-3.22E-06	-	-	3.09E-05	-3.13E-0
PENRE	1.77E-01	4.71E-02	3.51E-03	-1.16E-07	3.10E-04	-9.97E-05	-	-	5.58E-04	-1.33E-0
PENRM	4.07E-02	1.23E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+0
PENRT	2.18E-01	5.94E-02	3.51E-03	-1.16E-07	3.10E-04	-9.97E-05	-	-	5.58E-04	-1.33E-0
Use of secondary material	3.00E-04	1.70E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+0
Use of renewable secondary fuels	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+0
Use of non-renewable secondary fuels	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+0
Net use of fresh water	2.53E-04	9.56E-05	5.36E-07	-1.77E-11	4.42E-07	-1.15E-08	-	-	8.84E-07	-1.55E-0
Hazardous waste disposed	2.25E-07	5.91E-08	2.15E-08	-7.13E-13	1.70E-09	-5.04E-10	-	-	3.33E-09	-7.81E-1
Non-hazardous waste disposed	1.14E-03	3.13E-04	2.92E-04	-9.65E-09	6.79E-05	-2.60E-05	-	-	2.78E-05	-6.33E-0
Radioactive waste disposed	5.84E-07	1.64E-08	1.03E-09	-3.42E-14	3.87E-10	-6.84E-11	-	-	6.20E-10	-6.52E-1
Components for re-use	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+0
Materials for recycling	4.26E-04	4.70E-04	0.00E+00	0.00E+00	1.10E-04	-5.43E-05	-	-	0.00E+00	0.00E+0
Materials for energy recovery	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-	-	0.00E+00	0.00E+0
Exported energy	2.95E-05	-3.57E-10	0.00E+00	0.00E+00	3.80E-03	1.27E-05	-	-	7.80E-03	-1.07E-0
Particulate matter	4.51E-10	1.54E-10	2.38E-11	-7.86E-16	2.44E-12	-6.62E-13	-	-	4.15E-12	1.20E-1
Ionising radiation	2.45E-03	6.73E-05	4.28E-06	-1.42E-10	1.52E-06	-2.77E-07	-	-	2.41E-06	-2.49E-0
Ecotoxicity, freshwater	2.34E-02	5.83E-03	1.69E-03	-5.59E-08	1.70E-03	9.26E-05	-	-	3.87E-03	-4.68E-0
Human toxicity, cancer	3.24E-12	1.58E-12	1.05E-13	-3.47E-18	1.42E-13	-2.52E-15	-	-	2.86E-13	-3.34E-1
Human toxicity, non-cancer	4.11E-11	7.55E-12	2.44E-12	-8.07E-17	1.24E-12	-5.80E-14	-	-	2.51E-12	-3.02E-1
Land use	6.67E-02	-2.17E-02	3.39E-03	-1.12E-07	1.60E-04	-7.13E-05	-	-	2.43E-04	2.23E-0

Approved	Public	ABBG-00610-V01.02-EN	1 en	15/1

Comparability

EPDs published within the same product category, though originating from different programs, may not be comparable. Full conformance with a PCR allows PEP comparability only when all stages of a life cycle have been considered. However, variations and deviations are possible.

Applicable product standards

List of applicable product standards and certifications for Ty-rap products: Lloyd's Register of Shipping, DNV-GL, Mil Specification, American Bureau of Shipping (ABS), CE declaration, compliant to the low voltage directive, EN/IEC 62275, UL 62275, CSA 62275, MS3367/3368 and EN45545.

References

- PEP ecopassport[®] PROGRAM, PCR-ed4-EN-2021 09 06, Product Category Rules for Electrical, Electronic and HVAC-R Products.
- PEP ecopassport® PROGRAMME, PSR-0003-ed2-EN-2023 06 06, Specific rules for Cable Management Solutions.
- ISO 14040: Life cycle assessment. Environmental management. Principles and Framework. International Organization for Standardization, 2006.
- ISO 14044: Life cycle assessment. Environmental management. Requirements and guidelines. International Organization for Standardization, 2006.
- PRé Consultants, Software SimaPro 9.5, 2023 (www.simapro.com).
- Ecoinvent, 2022. Swiss Centre for Life Cycle Assessment, v 3.9.1 (Home ecoinvent).
- UNI EN 15804:2012+A2:2019: Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- EN 50693:2019: Product category rules for life cycle assessments of electronic and electrical products and systems

US	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
oved	Public	ABBG-00610-V01.02-EN	1	en	16/18
oved pyright 2024 ABB. All righ		ABBG-00610-V01.02-EN	1	en	

Environmental Impact Indicator Glossary

Impact indicators

Indicator	Description	Distri- bution
Global warming potential (GWP) - total	Indicator of potential global warming caused by emissions to air contributing to the greenhouse effect. The total global warming potential (GWP-total) is the sum of three sub-categories of climate change. GWP-total = GWP-fossil + GWP-biogenic + GWP- land use and land use change	kg CO₂ eq.
Ozone depletion (ODP)	Emissions to air that contribute to the destruction of the stratospheric ozone layer	kg CFC-11 eq.
Acidification of soil and water (A)	Acidification of soils and water caused by the release of certain gases to the atmosphere, such as nitrogen oxides and sulphur oxides	H+ eq.
Eutrophication (E)	Indicator of the contribution to eutrophication of water by the enrichment of the aquatic ecosystem with nutritional elements, e.g. industrial or domestic effluents, agriculture, etc. This indicator is divided to three: freshwater, marine and terrestrial.	kg P eq., kg N eq., mole N eq
Photochemical ozone creation (POCP)	Indicator of emissions of gases that affect the creation of photochemical ozone in the lower atmosphere (smog) because of the rays of the sun.	kg NMVOO eq.
Depletion of abiotic resources – elements (ADPe)	Indicator of the depletion of natural non-fossil resources	kg Sb eq.
Depletion of abiotic resources – fossil fuels (ADPf)	The use of non-renewable fossil resources in an unsustainable way (e.g. from material to waste)	MJ (lower heating value)
Water Deprivation potential (WDP)	Deprivation-weighted water consumption. Assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived.	m³ eq. depr.

Resource use indicators

Indicator	Description	Distri- bution
Total use of primary energy	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) + Total use of renewable primary energy re-sources (primary energy and primary energy resources used as raw materials)	MJ (lower heating value)

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE	
Approved	Public	ABBG-00610-V01.02-EN	1	l en	17/18	
© Copyright 2024 ABB. All rights reserved.						

Registration number: ABBG-00610-\	/01.02-EN Drafting Rules: Supplemented by:	PCR-ed4-EN-2021 09 06 : PSR-0003-ed2-EN-2023 06 06		
Verifier accreditation number: VH44	Information and re	eference documents: www.pep-ecopassport.org		
Date of issue: 06-2024	Validity period:	5 years		
Independent verification of the declaration and data, in compliance with ISO 14025: 2006				
Internal: 🔿 External: 🖲				
The PCR review was conducted by a panel of exper	ts chaired by Julie ORGELET (DDemain			
PEP are compliant with XP C08-100-1 :2016 or EN 50693:2019 The components of the present PEP cannot be compared with components from any other program.				
Document in compliance with ISO 14025: 2006 "En environmental declarations"	vironmental labels and declarations. T			