Loads

Type

TA M8 T

TA M10 T

TA M12 T

Heavy-duty anchor TA M-T Permissible loads of a single anchor¹⁾ in normal concrete of strength class C20/25.

For the design the complete current assessment ETA-04/0003 has to be considered.

Material/ surface2)

gvz

gvz

qvz

8.8

8.8

Effective anchorage depth hef [mm]

45

55

70

Minimum

member

h_{min}

100

110

140

accordance with the provisions of the complete ETA and the provisions of the EN 1992-4:2018. We recommend using our anchor design software C-FIX.

[mm]

thickness

Installation torque Tinst [Nm]

Non-cracked concrete

- Permissible tension (N_{nerm}) and shear loads (V_{nerm}); minimum spacing (s_,) and edge distances (c_,) with reduced loads
- V N_{perm} S_{min} 3) C_{min}³⁾ [kN] [kN] [mm] [mm]
- 5.7
 - 6.7 90 60
 - 9.5 11.0 110 70
- 11.9 17.0 160 120
- 75 Design according to EN 1992-4:2018 (for static resp. quasi-static loads). The partial safety factors for material resistance as regulated in the ETA as well as a partial safety factor for load

20

40

actions of $\gamma_1 = 1.4$ are considered. As a single anchor counts e.g. an anchor with a spacing $s \ge 3 \times h_{at}$ and an edge distance $c \ge 1.5 \times h_{at}$. Accurate data see ETA.

2) For technical data on steel grade and variants, see ETA.

Screw material 8.8

¹ In the case of combinations of tension and shear loads, bending moments with reduced or minimum spacing and edge distances (anchor groups), the design must be carried out in