
Energy Analyzer EMI3P-Y2

MN325006EN

- Current inputs EMI3P-Y2C0 series: CT 5A
- Current inputs EMI3P-Y2R0 series: current sensor 333 mV or EMI3P-ROG series, Rogowski coil without necessity of external integrator

- Class 1 (kWh) according to EN62053-21
- Class 2 (kvarh) according to EN62053-23
- Accuracy ±0.5 RDG (current/voltage)
- Energy meter
- Instantaneous variables readout: 3 DGT
- Energies readout: 7 DGT
- System variables: W, var, PF, Hz, Phase-sequence.
- Single phase variables: VLL, VLN, A, PF, THD (A,V, up to the 15th harmonic)
- Energy measurements: total kWh (imported and exported); kvarh
- TRMS measurements of distorted sine waves (voltages/currents)
- Self power supply
- Dimensions: 4-DIN modules and 72x72mm
- Protection degree (front): IP40
- Application adaptable display and programming procedure
- Easy connections management
- Detachable display
- Multi-use housing: for both DIN-rail and panel mounting applications

Product description

Three-phase energy meter with removable front LCD display unit. The same unit can be used either as a DIN-rail mounting or a panel mounting energy meter. This general purpose three-phase energy meter is suitable for both active and reactive energy metering for cost allocation but also for main electrical parameter meas-

urement and retransmission (transducer function). Possibility to display also exported active energy (e.g. in case of regenerated energy in lifts or similar applications) harmonic distortion information are available for the voltages and the currents, up to the 15th harmonic. An hourcounter meter is available to link the energy consumption to the

relevant working hours and an hourcounter to link the exported energy to production hours. Housing for DIN-rail mounting with IP40 (front) protection degree. Current measurements carried out by means of external current transformers, 5A or 333mV, or EMI3P-ROG series, Rogowski coil solution without external integrator. Voltage

measurements carried out either by means of direct connection or by means of potential transformers. EMI3P-Y2 is provided, with a pulsating output for active energy retransmission. In addition, a 2-wire RS485 communication port is available.

Type Selection

Range code

EMI3P-Y2C0 Energy analyzer

3-ph balanced and unbalanced load measurement

230/400 VLL ac (self power supply), 5(6) A (CT connection)

RS485 and static output

EMI3P-Y2R0 Energy analyzer

3-ph balanced and unbalanced load measurement

230/400 VLL ac (self power supply), 0.333 V or Rogowski (Rogowski EMI3P-ROG series)

RS485 and static output

Input specification

Rated Input	System type: 3	Overload status	EEE indication when the
Current type	Not isolated (shunt inputs).		value being measured is
	Note: the external 5 A		exceeding the "Continuous
	current transformers can		inputs overload" (maximum
	be connected to earth		measurement capacity)
	individually.	Max. and Min. indication	Max. instantaneous variables:
Current range			999; energies: 9 999 999.
EMI3P-Y2C0 series	In: 5 A		Min. instantaneous
	lmax: 1.2 ln.		variables: 0; energies 0.00.
Current range		LEDs	ranasion of one gree eree.
EMI3P-Y2R0 series	In: transformer primary		
	current corresponding to	Red LED (energy consumption)	
	0.333 V secondary output.	EMI3P-Y2C0 series	0.001 kWh by pulse if CT
	Imax: 1.2 In (0.4V		ratio x VT ratio is <7;
	secondary).		0.01 kWh by pulse if CT
Voltage (direct or by VT/PT)	230/400VLL; 6A; Un: 160		ratio x VT ratio is ≥ 7.0
	to 240VLN (277 to 415VLL).		< 70.0;
Accuracy (Display + RS485)			0.1 kWh by pulse if CT
(@25°C ±5°C, R.H. ≤60%, 50Hz)	F 0.0001 1 0.01		ratio x VT ratio is ≥ 70.0
Current	From 0.002In to 0.2In:		< 700.0;
	±(0.5% RDG +3DGT).		1 kWh by pulse if CT ratio
	From 0.2In to Imax:		x VT ratio is \geq 700.0.
Phase poutral voltage	±(0.5% RDG +1DGT). In the range Un: ±(0,5%	Red LED (energy consumption)	
Phase-neutral voltage	RDG +1DGT).	EMI3P-Y2R0 series	0.001kWh/pulse if VT ratio
Phase-phase voltage	In the range Un: ±(1% RDG		by In < 35.0
Thase-phase voltage	+1DGT).		0.01kWh/pulse if VT ratio
Frequency	Range: 45 to 65Hz;		by In ≥35.0 and <350.0
rioquonoy	resolution: ±1Hz		0.1kWh/pulse if VT ratio by
Active power	±(1%RDG +2DGT).		$ln \ge 350.0 \ and < 3500.0$
Power factor	±[0.001+1%(1.000 - "PF		1kWh/pulse if VT ratio by
	RDG")].		In ≥ 3500.0
Reactive power	±(2%RDG +2DGT).	Max frequency	16Hz, according to
Active energy	class 1 according to		EN62052-11. Green LED
	EN62053-21.		(on the terminal blocks
Reactive energy	class 2 according to		side) for power on (steady)
	EN62053-23.		and communication status:
Start up current:	10mA.		RX-TX (in case of RS485
Energy additional errors	A " FN00050 04		option only) blinking.
Influence quantities	According to EN62053-21,	Measurements	See "List of the variables
Temperature drift	EN62053-23 ≤200ppm/°C.		that can be connected to:"
Sampling rate	1600 samples/s @ 50Hz,	Method	TRMS measurements of
Sampling rate	1900 samples/s @ 50Hz,	Coupling type	distorted wave forms.
Display refresh time	1 second	Coupling type	By means of external CT's/ Rogowski coils.
Display Terresit time Display	2 lines	Crest factor	EMI3P-Y2C0 series: ≤3
Diopiay	1st line: 7-DGT or	Orest factor	(15A max. peak). EMI3P-
	3-DGT+3-DGT		Y2R0 series: 1.414 @ Imax
	2nd line: 3-DGT		(Imax=1.2 In = 0.4V). In any
Туре	LCD, h 7mm.		case: Vpeak max = 0.565V.
Instantaneous variables read-out	3-DGT.		· ·
Energies	Total: 5+2, 6+1 or 7DGT		

Input specification (cont.)

Current Overloads		Frequency	45 to 65 Hz.
Continuous	1.2In, @ 50Hz.	Keypad	Two push buttons for
For 500ms	20In, @ 50Hz.		variable selection and
Voltage Overloads		-	programming of the
Continuous	1.2 Un		instrument working
For 500ms	2 Un	_	parameters.
Current input impedance			
EMI3P-Y2C0 series	< 0.3VA		
EMI3P-Y2R0 series	>100 kΩ	_	
Voltage input impedance Self-power supply	Power consumption: < 4VA		

Output specifications

Pulse output		Connections	2-wire max. distance
Number of outputs	1		1000m, termination directly
Туре	Programmable from 0.01		on the instrument.
• •	to 9.99 kWh per pulses.	Addresses	247, selectable by means
	Output connectable to the		of the front keypad
	energy meter (+kWh)	Protocol	MODBUS/JBUS (RTU)
Pulse duration	TOFF ≥120ms, according	Data (bidirectional)	
	to EN62052-31.	Dynamic (reading only)	System and phase
	TON selectable (30 ms		variables: see table "List of
	or 100 ms) according to		variables"
	EN62053-31	Static (reading and writing)	All the configuration pa-
Output	Static: opto-mosfet.		rameters.
Load	VON 2.5 VAC/DC,	Data format	1 start bit, 8 data bit, and
	70 mA max.		even parity,1 or 2 stop bit.
	VOFF 260 VAC/DC max.	Baud-rate	9.6, 19.2, 38.4, 57.6, 115.2
Insulation	By means of optocouplers,	5	kbps.
	4000 VRMS output to	Driver input capability	1/5 unit load. Maximum
	measuring inputs.		160 transceiver on the
RS485		1 1 2	same bus.
Туре	Multidrop, bidirectional	Insulation	By means of optocouplers,
	(static and dynamic vari-		4000 VRMS output to
	ables)		measuring input.

Software functions

Password	Numeric code of max. 3	Transformer ratio	
	DGT; 2 protection levels of	VT (PT) ratio	1.0 to 99.9 / 100 to 999
	the programming data:	CT ratio (EMI3P-Y2C0 series)	1.0 to 99.9 / 100 to 999
1st level	Password "0", no protec-		The max CTxVT product is
	tion;		1187.
2nd level	Password from 1 to 999, all	Primary current	
	data are protected	(EMI3P-Y2R0 series)	10 to 9990 for 333mV cur-
Programming lock	By means of potentiometer		rent sensors
	(back-side of the display		1.00 kA, 2.00 kA, 4.00 kA for
	module) it is possible to		Rogwosky sensors
	lock the access to all the		The max value or the multi-
	configuration parameters.		plication Primary current x
System selection			VT ratio is 220000.
System 3-Ph.n unbalanced load	3-phase (4-wire)	Displaying	Up to 3 variables per page.
	3-phase (3-wire) without		6 different set of variables
	neutral connection.		available.
System 3-Ph.1 balanced load	 3-phase (3-wire) one cur- 	Reset	By means of the front
	rent and 3-phase to phase		keypad: total energies (kWh,
	voltage measurements.		kvarh).
	 3-phase (4-wire) one cur- 	Easy connection function	Wrong phase detection and
	rent and 3-phase to neutral		displaying. For all the display
	voltage measurements.		selections (except "D" and
System 2-Ph	2-phase (3-wire)		"E") the current, power and
System 1-Ph	1-phase (2-wire)		energy measurement are
			independent on the current
			direction.

General specifications

Operating temperature	-25°C to +55°C (-13°F to	Immunity to conducted			
operating temperature	131°F) (R.H. from 0 to 90% non-condensing) accord-	disturbances	10V/m from 150kHz to		
	ing to EN62053-21 and EN62053-23.	Surge	On current and voltage measuring inputs circuit:		
Storage temperature	-30°C to +70°C (-22°F to 158°F) (R.H. < 90%	Radio frequency suppression	6kV; According to CISPR 22		
	non-condensing) according to EN62053-21 and EN62053-23)	Standard compliance Safety Metrology	EN61010-1 EN62053-21, EN62053-23,		
Overvoltage category	Cat. III	Pulse output	IEC62053-31		
nsulation (for 1 minute) 4000 VRMS between measuring inputs and digital output.		Approvals	CE, cULus listed (available after having completed the approval process)		
Dielectric strength	4000VAC RMS for 1 minute	Connections Cable cross-section area	Screw type 2.4 x 3.5 mm		
Noise rejection CMRR	100 dB, 48 to 62 Hz	Cable cross section area	Min./Max. screws tightening torque: 0.4 Nm / 0.8 Nn		
EMC Electrostatic discharges Immunity to irradiated electromagnetic fields According to EN62052-11 15kV air discharge. Test with current: 10V/m from 80 to 2000MHz		Housing Dimensions (WxHxD) Material Mounting	72 x 72 x 65 mm Noryl, PA66 self-extinguishing: UL 94 V-0 Panel and DIN-rail		
Burst	Test without any current: 30V/m from 80 to 2000MHz; On current and voltage measuring inputs circuit: 4kV	Protection degree Front Screw terminals	IP40 IP20		
Burst		Weight	Approx. 400g (packing included)		

Power supply specifications

Self power supply

40 to 480VAC (45-65Hz).

Across input "VL2" and

"VL3"

z). Power consumption

≤4VA/1W

Insulation between inputs and outputs

	Measuring input	Opto-Mosfet output	Communication port	Self power supply	
Measuring inputs	-	4kV	4kV	0kV	
Opto-Mosfet output	4kV	-	-	4kV	
Communication port	4kV	-	-	4kV	
Self power supply	0kV	4kV	4kV	-	

NOTE: all the models have, mandatorily, to be connected to external current transformers/sensors.

List of the variables that can be connected to:

- RS485 communication port
- Pulse outputs (only "energies")

N°	Variable	1-ph. sys.	2-ph. sys.	3-ph. 4-wire balanced system	3-ph. 4-wire unbalanced system	3-ph. 3-wire balanced system	3-ph. 3-wire unbalanced system	Notes
1	kWh	х	x	х	х	х	х	Total (2)
2	kvarh	×	x	х	х	х	x	Total (3)
3	V L-N sys (1)	0	x	х	х	х	x	sys=system (∑)
4	V L1	×	x	х	х	х	х	
5	V L2	o	х	х	х	×	х	
6	V L3	0	0	×	×	×	×	
7	V L-L sys (1)	0	х	×	×	×	×	sys=system (∑)
8	V L1-2	0	х	х	х	×	×	
9	V L2-3	0	0	х	х	х	х	
10	V L3-1	0	0	х	х	х	х	
11	A L1	×	×	х	х	х	x	
12	A L2	0	х	х	х	х	х	
13	A L3	0	0	х	х	×	х	
14	VA sys (1)	x	х	х	х	х	х	sys=system (∑)
15	VA L1 (1)	х	х	х	х	x	х	
16	VA L2 (1)	o	х	х	х	x	х	
17	VA L3 (1)	o	0	х	х	x	х	
18	var sys	х	х	x	х	x	x	sys=system (∑)
19	var L1 (1)	х	х	х	х	×	х	
20	var L2 (1)	0	х	х	х	×	х	
21	var L3 (1)	0	0	х	х	×	х	
22	W sys	х	х	х	х	×	х	sys=system (∑)
23	W L1 (1)	х	×	х	х	х	x	
24	W L2 (1)	o	×	х	х	х	×	
25	W L3 (1)	0	0	х	х	х	х	
26	PF sys	х	х	х	х	х	х	sys=system (∑)
27	PF L1	х	х	х	х	х	х	
28	PF L2	0	х	x	x	x	x	
29	PF L3	0	0	x	x	x	x	
30	Hz	х	х	x	x	x	x	
31	Phase sequence	0	o	x	x	x	x	
32	THD VL1N	Х	Х	Х	Х	0	0	only if THD enabled
33	THD VL2N	0	Х	Х	х	0	0	only if THD enabled
34	THD VL3N	0	0	Х	х	0	0	only if THD enabled
35	THD A L1	х	х	х	х	Х	х	only if THD enabled
36	THD A L2	0	Х	Х	х	Х	х	only if THD enabled
37	THD A L3	0	0	х	х	Х	х	only if THD enabled
38	THD V L1-2	0	х	х	х	Х	х	only if THD enabled
39	THD V L2-3	0	0	Х	х	Х	х	only if THD enabled
40	THD V L3-1	0	0	х	х	Х	х	only if THD enabled
41	An	0	Х	0	Х	0	0	

(x) = available

A wrong wiring detection function (supporting the voltages/currents connections to the metering device) is also available via serial port too (refer to the communication protocols for details)

⁽o) = not available (zero indication on the display)

^{(1) =} Variable available only through the serial communication port RS485

^{(2) =} also kWh- (exported) with application E (see next table)

^{(3) =} sum (not algebraic) of kvarh imported and exported with application F (see next table)

Display pages

No	1st variable (1st half-line)	2nd variable (2nd half-line)		Note	Applica	itions				
					A	В	С	D	E	F
		Phase sequence		The phase sequence triangle appears in any page only if there is a phase reverse	x	х	х	х	х	х
1	Total	kWh	W sys		х	х	х	х	х	х
1b	Total I	kWh (-)	"NEG"	Exported active energy					+	
2	Total	kvarh	kvar sys			+	+	+	+	Т
3		PF sys	Hz	Indication of C, -C, L, -L depending on the quadrant		х	х	х	х	х
4	PF L1	PF L2	PF L3	Indication of C, -C, L, -L depending on the quadrant			х	х	х	х
5	A L1	A L2	A L3				х	х	х	х
6	V L1-2	V L2-3	V L3-1				х	х	х	
7	V L1	V L2	V L3				х	х		
8	"thd"	"L1"	THD VL1-N			x	x	x	x	x
9	"thd"	"L2"	THD VL2-N			x	x	x	x	x
10	"thd"	"L3"	THD VL3-N			x	x	x	x	x
11	"thd"	"L1"	THD A L1			х	x	x	х	x
12	"thd"	"L2"	THD A L2			x	x	x	x	x
13	"thd"	"L3"	THD A L3			х	x	x	x	x
14	"thd"	"L1"	THD VL1-2			х	х	х	х	x
15	"thd"	"L2"	THD VL2-3			х	х	х	х	х
16	"thd"	"L3"	THD VL3-1			х	х	х	х	х
17	"A n"		An			х	х	х	х	х
18	"working hours"(rel. to kWh+)		h				х	х	х	x
19	"working hours"(re. to kWh-)		h-						х	

Notes: x = available

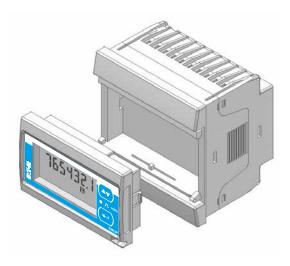
+ = only positive kvarh is measured (kvar sys is the algebraic sum of the phase kvar)

T = positive and negative kvarh are summed and measured in the same kvarh meter

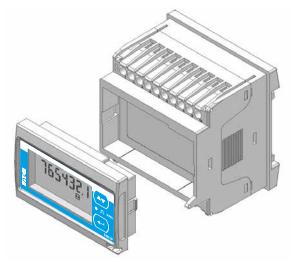
(kvarsys is the sum of the absolute values of each phase kvar). The phase kvar are displayed with the correct sign.

Additional available information on the display

Туре	1st line	2nd line	Note
Meter information 1	Y. 2007	r.A0	Year of production and firmware release
Meter information 2	value	LEd (kWh)	KWh per pulse of the LED
Meter information 3	SYS [3P.n]	value	System type and connection type
Meter information 4	Ct rAt.	value	Current transformer ratio
Meter information 5	Ut rAt.	value	Voltage transformer ratio
Meter information 6	PuLSE (kWh)	value	Pulse output: kWh per pulse
Meter information 7	Add	value	Serial communication address
Meter information 8	value	Sn	Secondary address (M-bus protocol)

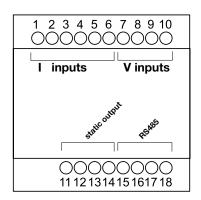

List of selectable applications

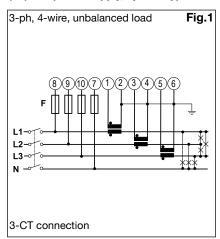
	Description	Notes
Α	A Active energy meter Active energy measurement with some minor parameters	
В	Active and reactive energy meter	Active and reactive energy measurement with some minor parameters
С	Full set of variables	Full set of available variables can be displayed (default selection)
D	Full set of variables +	Full set of available variables can be displayed +
E	Full set of variables +	Full set of variables with exported (negative) kWh meter
F	Full set of variables	Full set of variables with imported and exported kWh meters

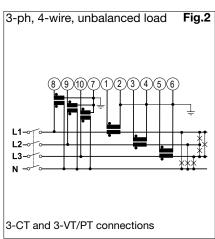

Notes:

+ Only in "D" and "E" applications the actual direction of the current is considered.

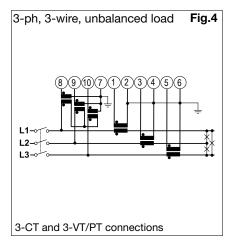
One instrument with double mounting capability

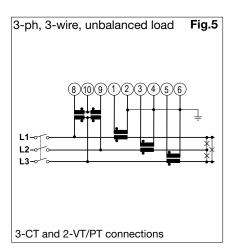

By means of the detachable display it is possible to configure the same instrument either as a panel mounting meter or...

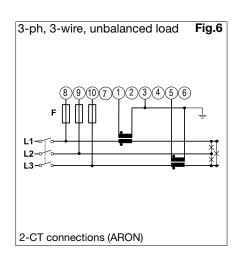

... as DIN-rail mounting meter.

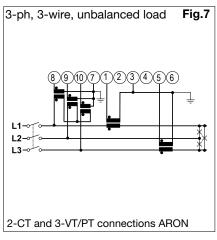


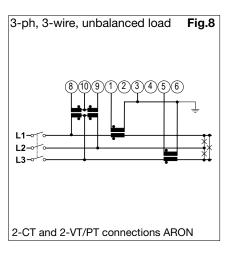
Wiring diagrams

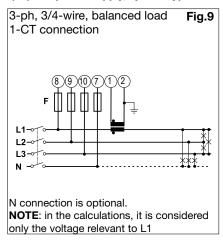

(6A) Self power supply, system type selection: 3P.n

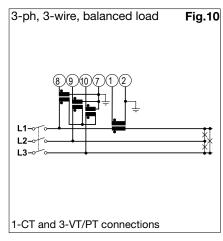


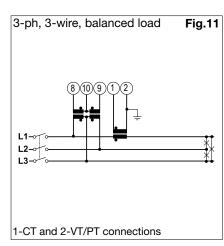



(6A) System type selection: 3P

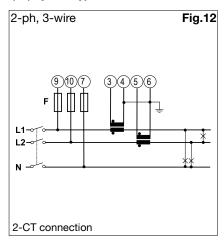


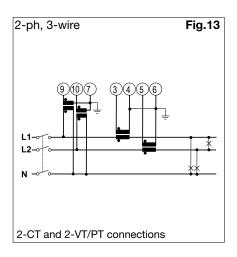


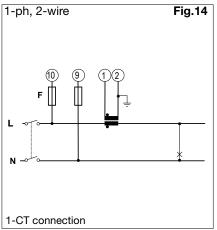




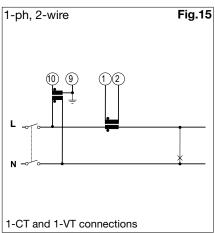
Wiring diagrams


(6A) Self power supply, system type selection: 3P.1

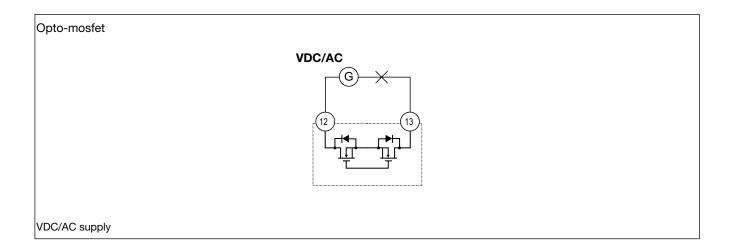




(6A) System type selection: 2P

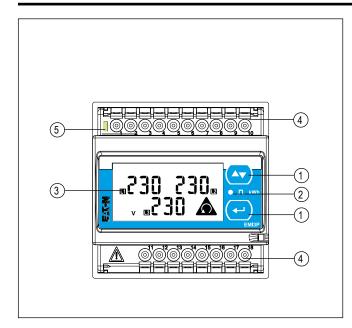


(6A) System type selection: 1P



(6A) System type selection: 1P

Static output wiring diagram


RS485 port wiring diagram

RS485 NOTE: additional devices provided with RS485 are connected as per the picture above. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (B+) and (T).

Front panel description

1. Keypad

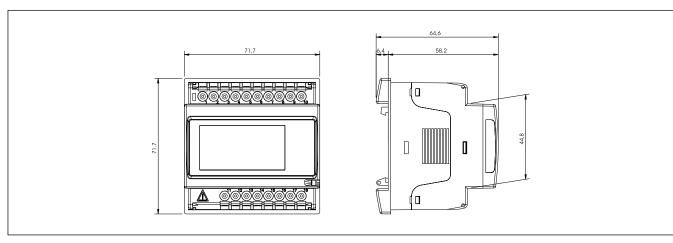
To program the configuration parameters and scroll the variables on the display.

2. Pulse output LED

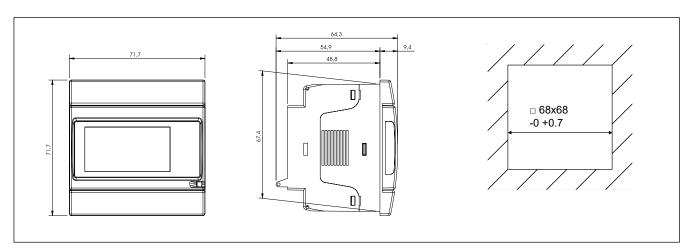
Red LED blinking proportional to the energy being measured

3. Display

LCD-type with alphanumeric indications to display all the measured variables.


4. Connections

Screw terminal blocks for instrument wiring.


5. Green LED

Lit when power supply is available.

Dimensions (DIN configuration)

Dimensions and panel cut out (72x72 panel mounting configuration)

