

SMART SWITCH ROCKERS

PEP ecopassport®

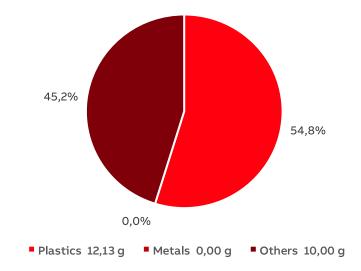
Product Environmental Profile

Product Environmental Profile - PEP Ecopassport.

Document in compliance with ISO 14025: 2006 "Environmental labels and declarations." Type III environmental declarations."

ORGANIZATION		CONTACT INFORMATION	CONTACT INFORMATION					
ABB EU		Pia Denninghoff, pia.denningho	Pia Denninghoff, pia.denninghoff@de.abb.com					
ADDRESS		WEBSITE	WEBSITE					
ABB AG BUSCH-JAEGER	Freisenbergstr. 2 58513 Lüdenscheid DEUTS	CHLAND abb.com						
STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE			
Approved	Public	ABBG-00495-V01.01-EN		1 en	1/11			

ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.


₩ ||| |

General Information

Reference product	One BT control element 1 gang Smart Switch Rocker 6735 BT-885 2CKA006730A0150 and its primary packaging
Description of the product	Rocker for Smart Switch Single Rocker black matt . The main function of Smart Switch Rocker product is to protect people for 20 years against direct contact with live parts of the electrical switch.
Functional unit	Protect people for 20 years against direct contact with live parts of the electrical switch. The reference service life of the product is 20 years.
Other products covered	The remaining products covered by the PEP are presented in the table "General characteristics of all variants of products covered by the PEP".

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	2/11

Total weight of Reference product with packaging

2,13

Plastics as % of weight		Metals as % of	Metals as % of weight		f weight
Name and CAS number	Weight%	Name and CAS number	Weight%	Name and CAS number	Weight%
PC	54,8	-	-	Cardboard	45,2

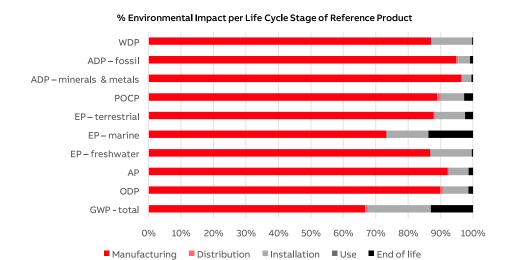
RoHS and REACH compatability and other information about the products materials (i.e. halogen free, recyclability).

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	3/11

Additional Environmental Information

Manufacturing	The production of reference product (2CKA006730A0150) occurs at the BJE factory located in Aue, Germany. The final product is assembled and packaged at the BJE factory in Lüdenscheid, which serves as the last logistic platform for the reference product.
Distribution	The distribution stage involves transporting the reference product from the last logistic platform of BJE to its installation site. This transport scenario is estimated based on the concentration of the market for the reference product group, utilizing sales data for the products within that group.
Installation	During installation, the disposal of packaging was considered.
Use	No energy consumption, no maintenance operations needed.
End of life	The end-of-life scenario for the reference product is created according to the recommendations given in the PEP PCR-ed4-EN-2021 09 06 document.
Benefits and loads beyond the system boundaries	Benefits and loads beyond the system boundaries (Module D) have been considered.

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	4/11


Reference lifetime	20 years
Product category	Other equipment family in accordance with: - PEP PCR-ed4-EN-2021 09 06 - PEP PSR 0005-ed3.1-EN-2023 12 08
Installation elements	No installation materials are required in the life cycle of the product.
Use scenario	No material and energy consumption occur during the use stage. No maintenance phase is planned for the Smart Switch Rocker.
Geographical representativeness	Europe
Technological representativeness	Technological representativeness
Software and database used	SimaPro 9.6 and Ecoinvent 3.10

Energy model used

Manufacturing	A specyfic BJE energy mix has been used.
Installation	Non-applicable
Use	Non-applicable
End of life	Recycling of product and packaging (Europe).

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	5/11

Common base of mandatory indicators

Public

Approved

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
GWP-total	kg CO ₂ eq.	1,15E-01	7,70E-02	9,13E-04	2,24E-02	0,00E+00	1,49E-02	-6,53E-0
GWP-fossil	kg CO ₂ eq.	1,15E-01	9,25E-02	9,12E-04	6,44E-03	0,00E+00	1,49E-02	-6,43E-0
GWP-biogenic	kg CO ₂ eq.	1,29E-04	-1,58E-02	1,53E-07	1,59E-02	0,00E+00	3,16E-06	-8,87E-0
GWP-luluc	kg CO ₂ eq.	2,81E-04	2,32E-04	2,09E-07	4,86E-05	0,00E+00	2,92E - 07	-8,06E-C
GWP-fossil = Global GWP-biogenic = Glo GWP-luluc = Global \	bal Warming Pot	ential bioge	nic	ge				
ODP	kg CFC-11 eq.	1,90E-09	1,71E-09	1,86E-11	1,47E-10	0,00E+00	2,69E-11	-2,02E-1
ODP = Depletion po	tential of the str	atospheric o	zone layer					
AP	H+ eq.	3,60E-04	3,32E-04	1,51E-06	2,17E-05	0,00E+00	4,93E-06	-2,04E-0
AP = Acidification p	otential, Accumu	lated Excee	dance					
EP-freshwater	kg P eq.	2,61E-05	2,26E-05	4,41E-08	3,30E-06	0,00E+00	8,52E-08	-2,39E-0
EP-marine	kg N eq.	1,01E-04	7,40E-05	3,18E-07	1,27E-05	0,00E+00	1,39E - 05	-4,27E-0
EP-marine EP-terrestrial	kg N eq. mol N eq.	1,01E-04 8,23E-04	7,40E-05 7,23E-04	3,18E-07 3,42E-06	1,27E-05 7,61E-05	0,00E+00 0,00E+00	1,39E-05 1,99E-05	
	mol N eq. rophication potential	8,23E-04 ential, fraction o	7,23E-04 on of nutrients ref nutrients reachi	3,42E-06 aching freshwa ng marine end	7,61E-05 iter end compartm	0,00E+00	,	-4,27E-0
EP-terrestrial EP-freshwater = Eut EP-marine = Eutrop	mol N eq. rophication potential	8,23E-04 ential, fraction o	7,23E-04 on of nutrients ref nutrients reachi	3,42E-06 aching freshwa ng marine end	7,61E-05 iter end compartm	0,00E+00	,	
EP-terrestrial EP-freshwater = Eut EP-marine = Eutrop EP-terrestrial = Eutr	mol N eq. crophication potenticophication potentic	8,23E-04 ential, fractio al, fraction o ntial, Accum 2,65E-04	7,23E-04 on of nutrients re f nutrients reachi ulated Exceedance 2,36E-04	3,42E-06 aching freshwa ng marine end ce	7,61E-05 Iter end compartm compartment	0,00E+00 ent	1,99E-05	-4,10E-0
EP-terrestrial EP-freshwater = Eut EP-marine = Eutrop EP-terrestrial = Eutr	mol N eq. crophication potenticophication potentic	8,23E-04 ential, fractio al, fraction o ntial, Accum 2,65E-04	7,23E-04 on of nutrients re f nutrients reachi ulated Exceedance 2,36E-04	3,42E-06 aching freshwa ng marine end ce	7,61E-05 Iter end compartm compartment	0,00E+00 ent	1,99E-05	-4,10E-(-1,82E-(
EP-terrestrial EP-freshwater = Eut EP-marine = Eutrop EP-terrestrial = Eutr POCP POCP = Formation p ADP-minerals &	mol N eq. crophication potenticophication potenticophication potenticophication potenticophication potential of trope	8,23E-04 ential, fraction o ntial, Accum 2,65E-04 ospheric ozo	7,23E-04 on of nutrients re f nutrients reachi ulated Exceedanc 2,36E-04	3,42E-06 aching freshwa ng marine end ce 2,58E-06	7,61E-05 iter end compartm compartment 1,93E-05	0,00E+00 ent 0,00E+00	1,99E-05 7,24E-06	-4,10E-0
EP-terrestrial EP-freshwater = Eut EP-marine = Eutrop EP-terrestrial = Eutr POCP POCP = Formation p ADP-minerals & metals	mol N eq. crophication potential ophication potential of trope kg NMVOC eq. cotential of trope kg Sb eq. MJ cals = Abiotic dep	8,23E-04 ential, fraction o ntial, Accum 2,65E-04 espheric ozc 7,46E-07 2,02E+00 eletion poter	7,23E-04 on of nutrients ref nutrients reachi ulated Exceedance 2,36E-04 one 7,20E-07 1,92E+00 otial for non-fossi	3,42E-06 aching freshwa ng marine end ce 2,58E-06 2,70E-09 1,26E-02	7,61E-05 iter end compartm compartment 1,93E-05 2,02E-08	0,00E+00 ent 0,00E+00	1,99E-05 7,24E-06 3,68E-09	-1,82E-C
EP-terrestrial EP-freshwater = Eut EP-marine = Eutrop EP-terrestrial = Eutr POCP POCP = Formation p ADP-minerals & metals ADP-fossil ADP-minerals & met	mol N eq. crophication potential ophication potential of trope kg NMVOC eq. cotential of trope kg Sb eq. MJ cals = Abiotic dep	8,23E-04 ential, fraction o ntial, Accum 2,65E-04 espheric ozc 7,46E-07 2,02E+00 eletion poter	7,23E-04 on of nutrients ref nutrients reachi ulated Exceedance 2,36E-04 one 7,20E-07 1,92E+00 otial for non-fossi	3,42E-06 aching freshwa ng marine end ce 2,58E-06 2,70E-09 1,26E-02	7,61E-05 iter end compartm compartment 1,93E-05 2,02E-08	0,00E+00 ent 0,00E+00	1,99E-05 7,24E-06 3,68E-09	-1,82E-(

ABBG-00495-V01.01-EN

1 en

6/11

Common base of mandatory indicators

Inventory flows indicator - Resource use indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
PERE	MJ	5,88E - 01	5,74E - 01	1,26E - 04	1,29E-02	0,00E+00	3,01E - 04	-1,36E-02
PERM	МЈ	1,99E-01	1,99E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	МЈ	7,86E-01	7,73E-01	1,26E-04	1,29E - 02	0,00E+00	3,01E-04	-1,36E-02
PENRE	МЈ	2,02E+00	1,92E+00	1,26E-02	7,43E-02	0,00E+00	1,74E-02	-1,32E-01
PENRM	МЈ	4,36E-01	4,36E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-1,57E-02
PENRT	МЈ	2,46E+00	2,35E+00	1,26E-02	7,43E-02	0,00E+00	1,74E-02	-1,47E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials

PERM = Use of renewable primary energy resources used as raw materials

PERT = Total Use of renewable primary energy resources

 ${\tt PENRE = Use \ of \ non-renewable \ primary \ energy \ excluding \ non-renewable \ primary \ energy \ resources \ used \ as \ raw \ materials}$

PENRM = Use of non-renewable primary energy resources used as raw materials

PENRT = Total Use of non-renewable primary energy resources

Inventory flows indicator – Indicators describing the use of secondary materials, water, and energy resources

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	МЈ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	МЈ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m³	2,12E-03	2,03E-03	1,16E-06	9,73E-05	0,00E+00	-8,81E-06	-6,78E-05

SM = Use of secondary material

RSF = Use of renewable secondary fuels

NRSF = Use of non-renewable secondary fuels

FW = Use of net fresh water

Inventory flows indicator - Waste category indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Hazardous waste disposed	kg	2,81E-03	2,41E-03	1,03E-05	2,54E-04	0,00E+00	1,32E-04	-1,03E-04
Non- hazardous waste disposed	kg	1,11E-01	6,18E-02	1,18E-04	9,59E-03	0,00E+00	3,92E - 02	-4,83E-03
Radioactive waste disposed	kg	1,73E-06	1,60E-06	2,36E-09	1,19E-07	0,00E+00	5,04E-09	-4,14E-07

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	7/11

Common base of mandatory indicators

Inventory flows indicator – Output flow indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Components for re- use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling	kg	1,04E-02	1,85E-03	0,00E+00	8,54E-03	0,00E+00	0,00E+00	0,00E+00
Materials for energy recovery	kg	7,48E-03	6,23E-04	0,00E+00	1,20E-03	0,00E+00	5,65E-03	-1,68E-05
Exported energy	МЈ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

Inventory flow indicator – other indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Biogenic carbon content of the product	kg of C	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Biogenic carbon content of the associated packaging	kg of C	8,62E-03	8,62E-03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	8/11

Optional indicators

Environmental indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
Total use of primary energy during the life cycle	МЈ	3,24E+00	3,12E+00	1,27E-02	8,72E-02	0,00E+00	1,77E-02	-1,61E-01
Emissions of fine particles	incidence of diseases	3,65E-09	3,28E-09	7,14E-11	1,94E-10	0,00E+00	1,02E-10	-1,03E-10
lonizing radiation, human health	kBq U235 eq.	9,28E - 03	8,79E-03	9,50E-06	4,67E-04	0,00E+00	2,02E-05	-1,62E-03
Ecotoxicity (fresh water)	CTUe	9,33E-01	7,90E-01	2,59E-03	1,06E-01	0,00E+00	3,34E-02	-1,85E-02
Human toxicity, car-cinogenic effects	CTUh	2,63E-10	2,30E-10	5,45E-12	1,79E-11	0,00E+00	8,70E-12	-1,36E-11
Human toxicity, non- carcinogenic effects	CTUh	1,00E-09	8,42E-10	9,48E-12	1,05E-10	0,00E+00	4,44E-11	-2,94E-11
Impact related to land use/soil quality		1,78E+00	1,72E+00	9,94E-04	5,38E-02	0,00E+00	4,82E-03	-1,29E-02

Other indicators

Indicator	Unit	Total	Manu- facturing	Distri- bution	Installation	Use	End of life	Bene- fits
No Other indicators used								

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	9/11

The LCA calculations were made for all representative products of products' variations groups. Based on LCA results extrapolation factors can be obtained for each individual environmental indicator. Thus, the extrapolation factors are calculated as a simple ratio of the indicator's value of representative product of products' variations groups to the value obtained for the reference product LCIA. The values of extrapolation factors for total impact score, manufacturing, distribution, installation, use and end of life stages and Module D are listed

Based on the LCIA calculations, most environmental indicator values for each life cycle phase for each product from product family, can be calculated using the following formula:

$$y = a * x_0$$

Where:

- y is the score of chosen environmental impact category
- a is the extrapolation factor (slope of linear function)
- x₀ is the score of chosen environmental impact category of the reference product

Values of 'Biogenic carbon content of the product' environmental impact category, for total score and manufacturing life cycle phase for products containing bio-based PC, as well as "Secondary materials for products containing secondary materials, can be calculated using the following formula:

$$y = a * x_0 + b$$

Where:

STATUS

Approved

- y is the score of chosen environmental impact category
- a is the extrapolation factor (slope of linear function) from
- x₀ is the score of chosen environmental impact category of the reference product
- b is the extrapolation factor (y-intercept of linear function)

SECURITY LEVEL

Public

REGISTRATION NUMBER

ABBG-00495-V01.01-EN

LANG.

1 en

9/11

General characteristics of all product variations covered by the PEP

Variation	Product code	Product type	Material	Design name
01	2CKA006220A0990	6735-11-866	Standard PC	Future linear, 1g
	2CKA006220A0985	6735-11-81		
	2CKA006220A0986	6735-11-82		
	2CKA006220A0987	6735-11-83		
	2CKA006220A0991	6735-11-884		
	2CKA006220A0992	6735-11-885		
02	2CKA006730A0150	6735 BT-885	Standard PC	Future linear, 2g
	2CKA006730A0142	6735 BT-81		
	2CKA006730A0143	6735 BT-82		
	2CKA006730A0144	6735 BT-83		
	2CKA006730A0148	6735 BT-866		
03	2CKA006730A0133	6736 FoH-81	Standard PC	Future linear, 2g
	2CKA006730A0134	6736 FoH-82		
04	2CKA006730A0141	6736 FoH-885	Standard PC	Future linear, 2g
	2CKA006730A0140	6736 FoH-884		
05	2CKA006730A0135	6736 FoH-83	Standard PC	Future linear, 2g
06	2CKA006730A0139	6736 FoH-866	Standard PC	Future linear, 2g
07	2CKA006730A0145	6735 BT-84	Bio-based PC	Future linear, 1g
	2CKA006730A0149	6735 BT-884		
08	2CKA006730A0164	6735/10-84	Bio-based PC	Future linear, 1g
09	2CKA006220A0988	6735-11-84	Bio-based PC	Future linear, 1g
10	2CKA006730A0136	6736 FoH-84	Bio-based PC	Future linear, 2g
11	2CKA006730A0165	6736/10-84	Bio-based PC	Future linear, 2g
12	2CKA001751A3413	6735 BT-44G	Recycled PC (93%)	Art-linear, 1g
	2CKA001751A3414	6735 BT-44M		
13	2CKA006220A0994	6735-11-44M	Recycled PC (93%)	Art-linear, 1g
	2CKA006220A0993	6735-11-44G		
14	2CKA006730A0166	6736 FoH-44G	Recycled PC (93%)	Art-linear, 2g
	2CKA006730A0167	6736 FoH-44M	*************************************	
15	2CKA006220A0996	6735-11-45M	Recycled PC (98%)	Art linear, 1g
16	2CKA001751A3416	6735 BT-45M	Recycled PC (98%)	Art linear, 1g
17	2CKA006730A0169	6736 FoH-45M	Recycled PC (98%)	Art linear, 2g
18	2CKA006220A0984	6735-11-914	Standard PC	Balance, 1g
19	2CKA006730A0151	6735 BT-914	Standard PC	Balance, 1g
20	2CKA006730A0152	6736 FoH-914	Standard PC	Balance, 2g
21	2CKA006730A0162	6735/10-914	Standard PC	Balance, 1g
22	2CKA006730A0163	6736/10-914	Standard PC	Balance, 2g

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN		1 en	9/11

Values of 'a' scaling factor to calculate **total** environmental impact score for all products' family in alternative life cycle scenario.

9											VARIAT	ION										
Impact category	01	02 (ref.)	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
GWP-total	0,75	1,00	0,84	1,16	1,17	1,09	0,64	0,57	0,64	0,70	0,62	0,35	0,77	0,50	0,71	0,59	0,71	0,64	0,83	0,78	0,74	0,70
GWP-fossil	0,75	1,00	0,84	1,16	1,17	1,09	0,75	0,68	0,76	0,86	0,78	0,35	0,78	0,50	0,71	0,59	0,72	0,65	0,82	0,77	0,73	0,68
GWP-biogenic	0,44	1,00	0,36	1,37	1,54	1,16	-101	-99,0	-101	-140	-138	0,85	-0,32	-0,76	-0,70	1,26	-0,49	-2,57	2,68	2,26	4,23	3,81
GWP-luluc	0,45	1,00	0,46	1,01	1,01	1,00	0,45	0,25	0,45	0,46	0,26	0,14	1,12	0,41	1,11	0,77	1,04	0,48	5,21	4,85	5,00	4,64
ODP	0,84	1,00	0,92	1,18	1,19	1,07	0,84	0,73	0,84	0,93	0,81	0,27	0,61	0,46	0,55	0,41	0,59	0,80	0,87	0,83	0,75	0,70
AP	0,51	1,00	0,55	1,10	1,12	1,03	0,50	0,40	0,51	0,55	0,44	0,18	0,95	0,35	0,93	0,73	0,90	0,51	0,60	0,57	0,49	0,46
EP-freshwater	0,42	1,00	0,42	1,04	1,05	0,99	0,41	0,22	0,41	0,42	0,22	0,17	1,18	0,44	1,17	0,84	1,11	0,57	0,61	0,60	0,41	0,40
EP-marine	0,71	1,00	0,78	1,13	1,14	1,07	0,73	0,58	0,73	0,79	0,64	0,38	0,94	0,62	0,89	0,67	0,88	0,66	0,82	0,78	0,66	0,62
EP-terrestrial	0,65	1,00	0,70	1,12	1,13	1,04	0,65	0,51	0,65	0,70	0,56	0,23	0,86	0,44	0,83	0,61	0,82	0,61	0,72	0,69	0,57	0,54
POCP	0,64	1,00	0,68	1,15	1,17	1,04	0,63	0,50	0,63	0,68	0,54	0,27	0,92	0,50	0,88	0,67	0,89	0,64	0,72	0,69	0,56	0,53
ADP-minerals	0,15	1,00	0,14	1,02	1,02	0,98	0,14	0,09	0,14	0,14	0,09	0,08	1,27	0,16	1,26	1,07	1,16	0,16	0,16	0,15	0,11	0,10
ADP-fossils	0,80	1,00	0,89	1,16	1,17	1,09	0,64	0,58	0,64	0,71	0,65	0,19	0,53	0,30	0,48	0,38	0,48	0,69	0,88	0,83	0,81	0,75
WDP	0,75	1,00	0,80	1,18	1,23	1,07	0,74	0,60	0,74	0,80	0,66	0,23	0,72	0,46	0,69	0,50	0,73	0,78	0,52	0,51	0,37	0,36
PERE	0,89	1,00	0,96	1,08	1,08	1,07	0,89	0,65	0,89	0,96	0,72	0,56	1,00	0,91	0,93	0,62	0,93	0,60	1,47	1,39	1,23	1,15
PERM	0,96	1,00	0,97	1,02	1,02	1,02	2,57	2,06	2,57	2,82	2,31	0,34	1,02	0,98	1,01	0,37	1,01	0,98	0,96	0,96	0,44	0,44
PERT	0,91	1,00	0,96	1,07	1,07	1,06	1,31	1,00	1,31	1,43	1,12	0,50	1,01	0,93	0,95	0,56	0,95	0,70	1,34	1,28	1,03	0,97
PENRE	0,80	1,00	0,89	1,16	1,17	1,09	0,60	0,54	0,60	0,67	0,61	0,19	0,53	0,30	0,48	0,38	0,48	0,69	0,88	0,83	0,81	0,75
PENRM	0,99	1,00	1,13	1,27	1,30	1,14	0,26	0,26	0,26	0,29	0,28	0,19	0,19	0,26	0,13	0,14	0,20	0,73	1,03	0,96	1,02	0,95
PENRT	0,83	1,00	0,93	1,18	1,19	1,10	0,54	0,49	0,54	0,60	0,55	0,19	0,47	0,30	0,41	0,34	0,43	0,69	0,91	0,85	0,85	0,79
SM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
RSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
NRSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00
FW	0,89	1,00	1,01	1,15	1,16	1,12	0,89	0,83	0,89	1,00	0,95	0,88	1,09	1,06	0,97	0,89	0,98	0,26	0,94	0,88	0,88	0,82
HWD	0,39	1,00	0,40	1,06	1,07	1,00	0,39	0,26	0,39	0,40	0,27	0,24	1,21	0,46	1,20	0,93	1,14	0,42	0,45	0,44	0,30	0,29
NHWD	0,89	1,00	1,02	1,29	1,34	1,13	0,93	0,86	0,93	1,04	0,97	1,01	1,22	1,26	1,10	1,03	1,19	0,58	2,52	2,35	2,45	2,28
RWD	0,33	1,00	0,31	1,04	1,05	0,98	0,30	0,17	0,30	0,30	0,17	0,15	1,21	0,35	1,20	0,93	1,13	0,73	0,84	0,79	0,69	0,65
CRU	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
MFR	1,00	1,00	0,90	0,95	0,96	0,91	0,82	0,38	0,82	0,82	0,38	0,32	0,87	0,90	0,86	0,32	0,89	0,85	0,91	0,90	0,46	0,45
MER	0,98	1,00	1,18	1,29	1,31	1,23	1,10	1,02	1,10	1,24	1,16	1,18	1,30	1,43	1,15	1,06	1,21	0,82	1,07	1,01	0,99	0,93
EE	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenic C, product	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenic C, packaging	0,99	1,00	0,99	1,01	1,01	1,01	0,99	0,23	0,99	0,99	0,23	0,17	1,01	0,99	1,00	0,18	1,00	0,99	0,99	0,99	0,23	0,22

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN		1 en	9/11

Values of 'a' scaling factor to calculate environmental impact score of **manufacturing stage** for all products' family in alternative life cycle scenario.

											VARIA	ATION										
Impact category	01	02 (ref.)	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
GWP-total	0,62	1,00	0,71	1,16	1,16	1,08	0,46	0,50	0,46	0,50	0,54	0,15	0,59	0,14	0,53	0,54	0,52	0,51	0,73	0,67	0,76	0,70
GWP-fossil	0,69	1,00	0,76	1,13	1,13	1,06	0,70	0,63	0,70	0,78	0,71	0,17	0,66	0,29	0,62	0,50	0,60	0,60	0,76	0,71	0,68	0,64
GWP-biogenic	1,00	1,00	1,01	1,00	1,00	1,00	1,83	1,25	1,83	2,15	1,58	0,30	1,01	1,02	1,01	0,30	1,01	1,03	0,99	0,99	0,40	0,40
GWP-luluc	0,34	1,00	0,35	1,01	1,02	1,00	0,34	0,20	0,34	0,35	0,22	0,11	1,15	0,28	1,14	0,87	1,05	0,38	6,10	5,66	5,97	5,53
ODP	0,82	1,00	0,91	1,19	1,20	1,08	0,82	0,74	0,82	0,91	0,84	0,24	0,56	0,39	0,50	0,41	0,54	0,78	0,86	0,81	0,77	0,72
AP	0,47	1,00	0,50	1,10	1,12	1,03	0,46	0,39	0,46	0,50	0,43	0,15	0,94	0,28	0,92	0,75	0,88	0,48	0,57	0,54	0,48	0,45
EP-freshwater	0,34	1,00	0,33	1,04	1,05	0,98	0,32	0,18	0,32	0,33	0,18	0,15	1,20	0,35	1,20	0,92	1,12	0,50	0,56	0,54	0,41	0,39
EP-marine	0,61	1,00	0,65	1,12	1,13	1,04	0,63	0,51	0,63	0,66	0,55	0,19	0,85	0,38	0,82	0,63	0,80	0,57	0,73	0,70	0,61	0,57
EP-terrestrial	0,60	1,00	0,65	1,13	1,14	1,04	0,60	0,49	0,60	0,65	0,55	0,18	0,83	0,35	0,80	0,62	0,79	0,56	0,68	0,65	0,57	0,53
POCP	0,59	1,00	0,63	1,16	1,17	1,03	0,59	0,48	0,59	0,63	0,52	0,23	0,90	0,42	0,86	0,68	0,87	0,60	0,68	0,65	0,55	0,53
ADP-minerals	0,11	1,00	0,11	1,02	1,02	0,98	0,11	0,07	0,11	0,11	0,08	0,06	1,28	0,12	1,27	1,09	1,16	0,13	0,13	0,12	0,09	0,09
ADP-fossils	0,79	1,00	0,88	1,16	1,17	1,09	0,62	0,57	0,62	0,69	0,65	0,17	0,50	0,26	0,45	0,37	0,45	0,67	0,87	0,82	0,82	0,76
WDP	0,71	1,00	0,77	1,21	1,26	1,08	0,70	0,61	0,70	0,77	0,69	0,21	0,68	0,38	0,65	0,52	0,69	0,75	0,45	0,44	0,36	0,35
PERE	0,89	1,00	0,96	1,08	1,08	1,07	0,88	0,65	0,88	0,96	0,72	0,56	1,00	0,91	0,93	0,63	0,93	0,59	1,48	1,40	1,25	1,17
PERM	0,96	1,00	0,97	1,02	1,02	1,02	2,57	2,06	2,57	2,82	2,31	0,34	1,02	0,98	1,01	0,37	1,01	0,98	0,96	0,96	0,44	0,44
PERT	0,91	1,00	0,96	1,07	1,07	1,06	1,32	1,01	1,32	1,44	1,13	0,50	1,01	0,92	0,95	0,56	0,95	0,69	1,35	1,29	1,04	0,98
PENRE	0,79	1,00	0,88	1,16	1,17	1,09	0,58	0,53	0,58	0,65	0,60	0,17	0,50	0,26	0,45	0,37	0,45	0,67	0,87	0,82	0,82	0,76
PENRM	0,99	1,00	1,13	1,27	1,30	1,14	0,26	0,26	0,26	0,29	0,28	0,19	0,19	0,26	0,13	0,14	0,20	0,73	1,03	0,96	1,02	0,95
PENRT	0,83	1,00	0,93	1,18	1,20	1,10	0,52	0,48	0,52	0,58	0,54	0,17	0,44	0,26	0,39	0,33	0,41	0,68	0,90	0,84	0,86	0,80
SM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
RSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
NRSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
FW	0,89	1,00	1,01	1,16	1,17	1,13	0,88	0,85	0,88	1,01	0,98	0,91	1,09	1,06	0,97	0,92	0,98	0,23	0,94	0,87	0,90	0,84
HWD	0,30	1,00	0,29	1,05	1,06	0,98	0,29	0,19	0,29	0,29	0,19	0,17	1,23	0,33	1,22	0,98	1,15	0,33	0,35	0,34	0,24	0,23
NHWD	0,80	1,00	0,86	1,32	1,38	1,06	0,87	0,82	0,87	0,89	0,84	0,86	1,15	1,11	1,06	1,01	1,19	0,38	3,65	3,39	3,59	3,34
RWD	0,28	1,00	0,26	1,03	1,04	0,97	0,25	0,14	0,25	0,25	0,14	0,13	1,22	0,29	1,21	0,97	1,14	0,71	0,82	0,78	0,71	0,66
CRU	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
MFR	1,00	1,00	0,43	0,43	0,43	0,43	0,00	0,00	0,00	0,00	0,00	0,25	0,25	0,28	0,22	0,22	0,22	0,15	0,49	0,41	0,49	0,41
MER	0,70	1,00	0,75	1,26	1,31	1,15	2,18	2,04	2,18	1,40	1,25	0,61	1,19	0,90	1,08	0,91	1,16	0,83	0,72	0,69	0,57	0,54
EE	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenic C, product	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenic C, packaging	0,99	1,00	0,99	1,01	1,01	1,01	0,99	0,23	0,99	0,99	0,23	0,17	1,01	0,99	1,00	0,18	1,00	0,99	0,99	0,99	0,23	0,22

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN		1 en	9/11

Values of 'a' scaling factor to calculate environmental impact score of **distribution stage** for all products' family in alternative life cycle scenario.

927											VARIA	ATION										
Impact category	01	02 (ref.)	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
GWP-total	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
GWP-fossil	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
GWP-biogenic	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
GWP-luluc	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
ODP	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
AP	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
EP-freshwater	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
EP-marine	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
EP-terrestrial	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
POCP	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
ADP-minerals	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
ADP-fossils	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
WDP	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
PERE	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
PERM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
PERT	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
PENRE	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
PENRM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
PENRT	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
SM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
RSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
NRSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
FW	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
HWD	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
NHWD	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
RWD	1,01	1,00	1,03	1,10	1,46	0,78	0,83	1,53	1,04	0,99	0,87	0,72	0,88	1,16	0,81	0,55	0,90	0,93	0,69	0,80	0,47	0,45
CRU	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
MFR	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
MER	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
EE	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenic C, product	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenic C, packaging	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN		1 en	9/11

Values of 'a' scaling factor to calculate environmental impact score of **installation stage** for all products' family in alternative life cycle scenario.

#:								100			VARIA	ATION		44.						201		
Impact category	01	02 (ref.)	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
GWP-total		2,00		1,08	1,11	1.01		0,47			Ω,47	0,35		1,04		0,35	1,04		1,00	1,00	0,46	0,46
GWP-fossil		1.00		1,26	1,36	1,04		0,54			0.54	0,47		1.15		0,47	1,15		1,01	1,01	0,54	0,54
GWP-biogenic		2,00		1,00	1,00	1,00		0,44			0,44	0,31		1,00		0,31	1,00		1,00	1,00	0,43	0,43
GWP-lulus		2,00		1,01	1,01	1,00		0,44			0,44	0,31		1,00		0,31	1.00		1,00	1,00	0,43	0,43
00P		2,00		1,03	1,04	1,00		0,45			0,45	0,32		1,02		0,32	1,02		1,00	1,00	0,44	0,44
AP		2,00		1,05	1,07	1,01		0,46			0,46	0,34		1,03		0,34	1,03		1,00	1,00	0,45	0,45
EP-freshwater		2,00		1,03	1,04	1.00		0,45			0,45	0,32		1,02		0,32	1,02		1,00	1.00	0,44	0,44
EP-marine		2,00		1,03	1,05	1,00		0,45			0,45	0,33		1,02		0,33	1,02		1,00	1,00	0,44	0,44
EP-terrestrial		2,00		1,04	1,06	1,01		0,46			0,46	0,33		1,02		0,33	1,02		1,00	1.00	0,45	0,45
POCP		2,00		1,06	1,08	1,01		0,46			0,46	0,34		1,03		0,34	1,03		1,00	1,00	0,45	0,45
ADP-minerals		2,00		1,09	1,13	1,01		0,48			0,48	0,36		1,05		0,36	1,05		1,00	1,00	0,47	9,47
ADP-fossils		2,00		1,05	1,07	1,01		0,46			0.46	0,34		1,03		0,34	1,03		1,00	1.00	0,45	0,45
WDP		2,00		1,01	1,01	1,00		0,44			0,44	0,31		1,00		0,31	1,00		1,00	1,00	0,43	0,43
PERE		2,00		1,04	1,06	1,01		0,46			0,46	0,33		1,02		0,33	1,02		1,00	1,00	0,45	0,45
PERM		2,00		1,00	1,00	1,00		1,00			1,00	1,00		1,00		1,00	1,00		1,00	1,00	1,00	1,00
PERT		2,00		1,04	1,06	1,01		0,46			0,46	0,33		1,02		0,33	1,02		1,00	1,00	0,45	0,45
PENRE	1,00	2,00	1,00	1,05	1,07	1,01	1.00	0,45	1,00	1,00	0,46	0,34	1,00	1,03	1,00	0,34	1,03	1,00	1,00	1,00	0,45	0,45
PENRM		2,00		1,00	1,00	1.00		1,00			1,00	1,00		1,00		1,00	1,00		1,00	1,00	1,00	1,00
PENRT		2,00		1,05	1,07	1,01		0,46			0,46	0,34		1,03		0,34	1,03		1,00	1,00	0,45	0,45
SM		1,00		1,00	1,00	1,00		1,00			1,00	1,00		1,00		1,00	1,00		1,00	1,00	1,00	1,00
RSF		2,00		1,00	1,00	1,00		1,00			1,00	1,00		1,00		1,00	1,00		1,00	1,00	1,00	1,00
NRSF		1,00		1,00	1,00	1,00		1,00			1,00	1,00		1,00		1,00	1,00		1,00	1,00	1,00	1,00
FW		2,00		1,02	1,02	1.00		0,45			0,45	0.31		1,01		0,31	1,01		1,00	1,00	0,44	0,44
HWD		2,00		1,08	1,12	1,01		0,47			0,47	0,36		1,05		0,36	1,05		1,00	1,00	0,47	0,47
NHWD		2,00		1,24	1,33	1,04		0,53			0,53	0,46		1,14		0,46	1,14		1,01	1.01	0,54	0,54
RWD		2,00		1,11	1,15	1,02		0,48			0,48	0,37		1,06		0,37	1,06		1,01	1,01	0,48	0,48
CRU		2,00		1,00	1,00	1,00		1,00			1,00	1,00		1,00		1,00	1,00		1,00	1,00	1,00	1,00
MFR		2,00		1,06	1,08	1.01		0,46			0,46	0,34		1,03		0,34	1,03		1,00	1,00	0,46	0,46
MER		2,00		1,36	1,51	1,05		0,58			0,58	0,53		1,21		0,53	1,21		1,02	1,02	0,59	0,59
EE		2,00		1,00	1,00	1,00		1,00			1,00	1.00		1,00		1.00	1,00		1,00	1,00	1,00	1,00
Biogenie C, product		2,00		1,00	1,00	1,00		1,00			1.00	1,00		1,00		1,00	1,00		1,00	1,00	1,00	1,00
liogenic C, packaging		2.00		1.00	1.00	1.00		1.00			1.00	1.00		1.00		1.00	1.00		1.00	1.00	1.00	1.00

TATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE

Values of 'a' scaling factor to calculate environmental impact score of **end of life stage** for all products' family in alternative life cycle scenario.

8											VARIA	MOITA										
Impact category	01	02 (ref.)	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
GWP-total	1,00	1,00	1,27	1,27	1,27	1,27	1,00	1,00	1,00	1,27	1,27	1,37	1,38	1,53	1,19	1,19	1,21	0,79	1,12	1,04	1,12	1,04
GWP-fossil	1.00	1,00	1.27	1.27	1.27	1,27	1,00	1.00	1,00	1,27	1,27	1,37	1,38	1,53	1,19	1,19	1.21	0.79	1.12	1.04	1,12	1.04
GWP-biogenic	1,00	1,00	1,27	1,27	1,27	1,27	1,00	1,00	1,00	1,27	1,27	1,38	1,38	1,53	1,19	1,19	1,21	0,79	1,12	1,04	1,12	1,04
GWP-luluc	0,96	1.00	1.22	1,27	1,27	1,27	0,96	0,96	0,96	1,22	1,22	1,33	1,38	1,48	1,19	1,19	1,21	0,79	1,08	1,00	1,08	1,00
ODP	0,96	1,00	1,22	1,27	1,27	1,27	0,96	0,96	0,96	1,22	1,22	1,33	1,38	1,48	1,19	1,19	1,21	0,79	1,08	1,00	1,08	1,00
AP	0,98	1,00	1,25	1,27	1,27	1,27	0,98	0,98	0,98	1,25	1,25	1,36	1,38	1,51	1,19	1.19	1,21	0,79	1,10	1,03	1,10	1,03
EP-freshwater	0,97	1,00	1,24	1,27	1,27	1,27	0,97	0,97	0,97	1,24	1,24	1,34	1,38	1,50	1,19	1,19	1,21	0,79	1,09	1,01	1,09	1,01
EP-marine	1,00	1,00	1,27	1,27	1,27	1,27	1,00	1,00	1,00	1,27	1,27	1,38	1,38	1,54	1,19	1,19	1,21	0,79	1,12	1,04	1,12	1,04
EP-terrestrial	0,99	1,00	1,26	1,27	1,27	1,27	0,99	0,99	0,99	1,26	1,26	1,37	1,38	1,52	1,19	1,19	1,21	0,79	1,11	1,05	1,11	1,03
POCP	0,98	1,00	1,25	1,27	1,27	1,27	0,98	0,98	0,98	1,25	1,25	1,35	1,38	1,51	1,19	1,19	1,21	0,79	1,10	1,02	1,10	1,02
ADP-minerals	0,96	1,00	1,22	1,27	1,27	1,27	0,96	0,96	0,96	1,22	1,22	1,33	1,38	1,48	1.19	1,19	1,21	0,79	1,08	1,00	1,08	1,00
ADP-fossils	0,96	1,00	1,22	1,27	1,27	1,27	0,96	0,96	0,96	1,22	1,22	1,33	1,38	1,48	1,19	1,19	1,21	0,79	1,08	1,00	1,08	1,00
WDP	0,97	2,00	1,24	1,27	1,27	1,27	0,97	0,97	0,97	1,24	1,24	1,34	1,38	1,50	1.19	1,19	1,21	0,79	1,09	1,02	1,09	1,02
PERE	0,98	1,00	1,24	1,27	1,27	1,27	0,98	0,98	0,98	1,24	1,24	1,35	1,38	1,50	1,19	1,19	1,21	0,79	1,10	1,02	1,10	1,02
PERM	1,00	1,00	1,00	1,00	1,00	1,00	1.00	1,00	1,00	1,00	1,00	1.00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1.00
PERT	0,98	1,00	1,24	1,27	1,27	1,27	0,98	0,98	0,98	1,24	1,24	1,35	1,38	1,50	1,19	1,19	1,21	0,79	1,10	1,02	1,10	1,02
PENRE	0.96	1,00	1,22	1,27	1,27	1,27	0,96	0,96	0,96	1.22	1,22	1,33	1,38	1,48	1,19	1,19	1,21	0,79	1,08	1,00	1,08	1,00
PENRM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
PENRT	0.96	1.00	1,22	1,27	1.27	1,27	0.96	0,96	0,96	1,22	1,22	1,33	1,38	1,48	1,19	1,19	1,21	0,79	1.08	1,00	1,08	1,00
SM	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
RSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
NRSF	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
FW	1,01	1,00	1,28	1,27	1,27	1,27	1,01	1,01	1,01	1,28	1,28	1,39	1,38	1,55	1,19	1,19	1,21	0,79	1,13	1,05	1,13	1,05
HWD	1,00	1,00	1,27	1,27	1,27	1,27	1,00	1,00	1,00	1,27	1,27	1,37	1,38	1,53	1,19	1,19	1,21	0,79	1,12	1,04	1,12	1,04
NHWD	1,00	1,00	1.27	1.27	1,27	1,27	1,00	1,00	1,00	1,27	1,27	1,38	1,38	1,54	1,19	1,19	1,21	0,79	1,12	1,04	1,12	1,04
RWD	0,98	1,00	1,24	1,27	1,27	1,27	0,98	0,98	0,98	1,24	1,24	1,34	1,38	1,50	1,19	1,19	1,21	0,79	1,09	1,02	1,09	1,02
CRU	1,00	7,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
MFR	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
MER	1,00	1,00	1,27	1,27	1,27	1,27	1,00	1,00	1,00	1,27	1,27	1,38	1,38	1,54	1,19	1,19	1,71	0,79	1,12	1,04	1,12	1,04
tt	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1.00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenic C, product	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Biogenie C, packaging	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1,00	1.00	1.00	1.00

	I		I	Luc	I
ITATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAG

Values of 'a' scaling factor to calculate total environmental impact score of **Module D** for all products' family in alternative life cycle scenario.

Impact category	01	02 (ref.)	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
GWP-total		1.00	1.19	1.55	1,64	1.19	1	0.97		1.19	-0.01	0.03	1.26	1,58	1,13	1.15	1,36	0.85	1.10	1.05	1.07	1.0
GWP-fossil		2,00	1,19	1,55	1,65	1,19		0,97		1,19	-0,01	0,03	1,26	1,58	1,13	1,15	1,36	0,85	1,10	1,05	1,07	1,03
GWP-biogenic		2,00	1,24	1,34	1,36	1,24		0,96		1,24	0,00	0,00	1,33	1,52	1,17	1,13	1,24	0,82	1,11	1,04	1,07	1,00
GWP-lulue		2,00	1.22	1,43	1,48	1,22		0.96		1,22	0,00	0,00	1,30	1,55	1,15	1.14	1,29	0,83	1,11	1.05	1.07	1,0
ODP		2,00	1,19	1,57	1,66	1,19		0,97		1,19	0,00	0,03	1,26	1,59	1,13	1,15	1,36	0,86	1,10	1,05	1,07	1,0
AP		1,00	1,16	1,68	1,81	1,16		0,97		1,16	0,00	0,01	1,23	1,62	1,12	1,16	1,42	0,87	1,10	1,05	1,07	1,0
EP-freshwater		1.00	1,21	1,46	1,53	1.21		0,97		1.21	0.00	0,00	1,29	1,56	1,15	1.14	1,31	0.84	1.11	1.05	1.07	1.0
EP-marine		2,00	1,16	1,70	1,84	1,16		0,97		1,16	0,00	0,01	1,22	1,62	1,11	1,16	1,44	0,88	1,10	1,05	1,07	1,0
EP-terrestrial		2,00	1,15	1,73	1,88	1,15		0,97		1,15	0,00	0,01	1,21	1,63	1,11	1,16	1,45	0,88	1,10	1,05	1,07	1,0
POCP		2,00	1,15	1,76	1,91	1,15		0.98		1,15	0.00	0,02	1.20	1,64	1,10	1,17	1,46	0,89	1,10	1,05	1,07	1,6
ADP-minerals		2,00	1,11	1,92	2,13	1,11		0,98		1,11	0.00	0,00	1,15	1,69	1,08	1,18	1,55	0,91	1,09	1,06	1,07	1,0
ADP-fossils		1,00	1,18	1,60	1,71	1,18		0,97		1,18	-0,15	0,02	1,25	1,60	1,13	1,15	1,38	0,86	1,10	1,05	1,07	1,
WDP		1,00	1,11	1,91	2.12	1.11		0,98		1.11	0.00	0,00	1.16	1,68	1,08	1.18	1,55	0.91	1,09	1,06	1.07	1.0
PERE		2,00	1,22	1,41	1,46	1,22		0,96		1,22	-0,02	0,00	1,31	1,54	1,16	1,14	1,28	0,83	1,11	1,05	1,07	1,7
PERM		2,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,
PERT		2.00	1,22	1,41	1,46	1,22		0,96		1,22	-0,02	0,00	1,31	1,54	1,16	1,14	1,28	0,83	1.11	1,05	1,07	1,/
PENRE	1,00	2,00	1,18	1,60	1,71	1,18	1,00	0,97	1,00	1,18	-0,15	0,02	1,25	1,60	1,13	1,15	1,38	0,86	1,10	1,05	1,07	1,5
PENRM		1,00	1,00	2,44	2,80	1,00		1,00		1,00	-0,02	0,00	1,00	1,83	1,00	1,22	1,83	1,00	1,07	1,07	1,07	1,
PENRT		1,00	1,16	1,69	1.82	1,16		0,97		1,16	-0,17	0,02	1,22	1,62	1,11	1.16	1,43	0.88	1,10	1,05	1.07	1/
SM		1,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,
RSF		2,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1/
NRSF		1,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1/00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,/
FW		2,00	1,17	1,66	1,78	1,17		0,97		1,17	0.00	0,00	1,23	1,61	1,12	1,16	1,41	0,87	1,10	1,05	1,07	1,
HWD		1,00	1,15	1,75	1,91	1,15		0,98		1,15	0,00	0,01	1,20	1,64	1,10	1,17	1,46	0,89	1,10	1,05	1,07	1,
NHWD		1,00	1,02	2,33	2,66	1,02		1,00		1,02	0,00	0,00	1,03	1,80	1,02	1,21	1,77	0.98	1,08	1,07	1,07	1,4
RWD		1,00	1,23	1,38	1,42	1,23		0,96		1.23	0,00	0,00	1,31	1,53	1,16	1,14	1,26	0,82	1,11	1,04	1,07	1,0
CRU		2,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,4
MFR		1,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,/
MER		2,00	1,00	2,44	2,80	1,00		1,00		1,00	0.00	0,00	1,00	1,83	1,00	1,22	1,83	1,00	1,07	1,07	1,07	1.0
EE		1,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,
Biogenic C, product		1,00	1,00	1,00	1,00	1,00		1,00		1,00	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1./
Biogenic C, packaging		2.00	1.00	1.00	1.00	1.00		1.00		1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1,0

SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Public	ABBG-00495-V01.01-EN		1 en	9/11

Values of 'b' extrapolation factor to calculate environmental impact score for products containing bio-based PC - total and from manufacturing stage.

-	VARIATION				
Impact category	07 08 09 10				11
Biogenic C, product	0,007	0,007	0,007	0,009	0,009

Values of 'b' extrapolation factor to calculate environmental impact score for products containing secondary materials - total and from manufacturing stage.

-	VARIATION					
Impact category	12 13 14 15 16				16	17
Secondary materials	0,015	0,015	0,017	0,014	0,014	0,01

The remaining values are established as zero.

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN		1 en	9/11

Environmental Impact Indicator Glossary

Impact indicators

Indicator	Description	Distri- bution
Global warming potential (GWP) - total	Indicator of potential global warming caused by emissions to air contributing to the greenhouse effect. The total global warming potential (GWP-total) is the sum of three sub-categories of climate change. GWP-total = GWP-fossil + GWP-biogenic + GWP- land use and land use change	kg CO₂ eq.
Ozone depletion (ODP)	Emissions to air that contribute to the destruction of the stratospheric ozone layer	kg CFC-11 eq.
Acidification of soil and water (A)	Acidification of soils and water caused by the release of certain gases to the atmosphere, such as nitrogen oxides and sulphur oxides	H+ eq.
Eutrophication (E)	Indicator of the contribution to eutrophication of water by the enrichment of the aquatic ecosystem with nutritional elements, e.g. industrial or domestic effluents, agriculture, etc. This indicator is divided to three: freshwater, marine and terrestrial.	kg P eq., kg N eq., mole N eq.
Photochemical ozone creation (POCP)	Indicator of emissions of gases that affect the creation of photochemical ozone in the lower atmosphere (smog) because of the rays of the sun.	kg NMVOC eq.
Depletion of abiotic resources – elements (ADPe)	Indicator of the depletion of natural non-fossil resources	kg Sb eq.
Depletion of abiotic resources – fossil fuels (ADPf)	The use of non-renewable fossil resources in an unsustainable way (e.g. from material to waste)	MJ (lower heating value)
Water Deprivation potential (WDP)	Deprivation-weighted water consumption. Assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived.	m³ eq. depr.

Resource use indicators

Indicator	Description	Distri- bution
Total use of primary energy	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) + Total use of renewable primary energy re-sources (primary energy and primary energy resources used as raw materials)	MJ (lower heating value)

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	10/11

Registration number:	ABBG-00495-V01.01-EN	Drafting Rules:	PCR-ed4-EN-2021 09 06		
		Supplemented by:	PSR-0005-ed3.1-EN-2023 12 08		
Verifier accreditation r	number: VH08	Information and refere	nce documents: www.pep-ecopassport.org		
Date of issue:	07-2025	Validity period: 5 ye	ars		
Independent verificati	Independent verification of the declaration and data, in compliance with ISO 14025: 2006				
Internal: O	External: •				
The PCR review was co	onducted by a panel of experts chaired by Julie	e ORGELET (DDemain)			
PEP are compliant with XP C08-100-1 :2016 or EN 50693:2019 or NE E38-500 :2022 The components of the present PEP may not be compared with elements from any other program.					
Document in complian environmental declara	ce with ISO 14025: 2006 "Environmental label tions"	ls and declarations. Type	PORT		

STATUS	SECURITY LEVEL	REGISTRATION NUMBER	REV.	LANG.	PAGE
Approved	Public	ABBG-00495-V01.01-EN	1	en	11/11